VCM-X / RNE Operator Interfaces Technical Guide

VCM-X Controller Code: SS1026, SS1030, SS1032, SS1033, SS1034
Requires System Manager Code: SS1028 Version 1.0 and up
Requires Service Tool Code: SS1027 Version 1.0 and up

RNE Controller Code: SS1045
Requires Service Tool Code: SS1056
TABLE OF CONTENTS

INTRODUCTION
- Modular Service Tool and Modular System Manager .. 3

SYSTEM CONNECTION
- Modular Service Tool .. 4
- Modular System Manager ... 5
- Power/Comm Board Wiring ... 6
- Modular System Manager - Stand Alone ... 7

INTERFACES OVERVIEW
- Display Screens and Data Entry Keys ... 8
- Mode Selection Buttons ... 9
- Entering Unit ID (Address) ... 9

INITIALIZATION
- System Manager Initialization .. 10
- System Manager Passcodes ... 12
- Modular Service Tool Initialization .. 13
- Setting the Energy Saving Timer ... 14
- Setting the Time and Date ... 15
- Week Schedules .. 16
- Holiday Schedules ... 17
- Schedule Override .. 17

PROGRAMMING
- VCM-X Configuration Screen Index ... 18
- Configuring VCM-X Controllers ... 19
- RNE Configuration Screen Index .. 28
- Configuring RNE Controllers .. 29
- VCM-X / RNE Setpoint Screen Index .. 38
- Configuring VCM-X / RNE Setpoints ... 39
- VCM-X / RNE Status Screen Index ... 48
- VCM-X / RNE Status Screens ... 49
- VAV/Zone Configuration Screens ... 58
- VAV/Zone Setpoint Screens ... 60
- VAV/Zone Status Screens .. 64
- MiniLink PD Configuration Screens .. 66
- MiniLink PD Status Screens ... 67

TROUBLESHOOTING
- Damper Force Modes ... 68
- VCM-X / RNE Outputs Force .. 70

INDEX ... 71
INTRODUCTION

Modular Service Tool and System Manager

The OE391-11 Modular Service Tool is a system operator interface that provides a direct link to enable the system operator to view the status, configure, and adjust the setpoints of the VCM-X, RNE, or VAV/Zone Controller on the control system communications loop. The Modular Service Tool is housed in an attractive beige-colored plastic enclosure. The display area is covered with a clear plastic bezel for protection of the display screen. The Modular Service Tool has a 4-line-by-20-character display panel with adjustable contrast control and a 27-key membrane keypad for data selection and entry. All keypad operations are simple and straightforward, utilizing non-cryptic plain English language messages. Menu-driven programming allows for easy setup and operation without the need for specialized training. The Modular Service Tool is supplied with (4) AA 1.5 V Volt alkaline batteries, a wall mount DC power supply and a communication cable terminated with an 8-pin DIN connector for connection to the Service Tool. The cable allows you to setup and program any Orion controller with an 8-pin DIN connector socket by simply plugging the service tool into the socket on the controller.

The Modular Service Tool is designed to be hand-carried. Its rugged plastic housing provides superior protection for the electronic components housed inside. The Modular Service Tool is a top-quality service tool that will stand up to the demands of the typical job site environment for many years.

The OE392-07 Modular System Manager provides a direct link to enable you to view the status and adjust the setpoints of the VCM-X and VAV/Zone controllers on the control system communications loop. The System Manager is housed in an attractive, off-white colored plastic enclosure. The System Manager is equipped with a 4-line-by-20-character backlit display panel and a 24-key membrane keypad for data selection and entry. All keypad operations are simple and straightforward, utilizing non-cryptic plain English language messages. Menu-driven programming allows for easy setup and operation without the need for specialized training. The System Manager also has 2 integral LEDs for user notification of system alarm conditions and override initiations. Protection from unauthorized users is provided by the System Manager’s integral multi-level passcode authorization programming.

On a Networked System, the Modular System Manager is connected to the communications and power loop of the system via modular cables that simply plug into the System Manager board and the Power/Comm Distribution Board. This virtually eliminates wiring errors and makes installation fast and easy. When it is to be connected to a Stand-Alone system, a cable with modular connectors on one end and stripped wire ends on the other end is provided to facilitate connecting communications and power to the Modular System Manager from the 24 VAC power source and the HVAC unit controller communication wiring terminals.

The Modular System Manager is designed for wall mounting. Mounting holes are provided to attach the Modular System Manager to a standard handy box. It is recommended that the System Manager be mounted at approximately eye level to allow for ease of programming and reading of the display. The System Manager is typically mounted in the building manager’s or superintendent’s office or in an equipment room. The attractive enclosure is quite suitable for mounting in any location.

NOTE: The Modular System Manager can be used with the VCM-X Controller, but not with the RNE Controller. The interface options for the RNE Controller are the Modular Service Tool, the System Manager Touch Screen II, or Prism II Software.
Modular Service Tool

Whether you have a Stand Alone, Interconnected, or Networked Orion Controls System, the Modular Service Tool always connects to an HVAC unit controller via a prefabricated cable that is supplied with the service tool. The Modular Service Tool cable is terminated on both ends with a mini-DIN connector. Attach one end to the Modular Service Tool and the other end to the mini-DIN connector on the HVAC unit controller. If this is an Interconnected System, all controllers that are interconnected with communications cable can be programmed from any HVAC unit controller on the loop. If this is a Networked System, all controllers on the entire Networked System can be programmed from one HVAC unit controller.

Be sure that the Modular Service Tool has fresh batteries installed or that it is connected to a power source using the supplied power pack before attempting any programming of the controller. See Figure 3 for connection details.

Figure 3: Modular Service Tool

- Be sure that the Modular Service Tool is connected to the supplied power pack or has fresh batteries installed before attempting programming of the controller. Be sure the power is turned off on the Modular Service Tool before connecting the cable to the controller.

- The Modular Service Tool can be connected to the VCM-X, RNE or VAV/Zone controller by plugging one end of the supplied cable into the Modular Service Tool DIN connector and the other end into the DIN connector on the controllers.
Modular System Manager

NOTE: The Modular System Manager can be used with the VCM-X Controller, but not with the RNE Controller. The interface options for the RNE Controller are the Modular Service Tool, the System Manager Touch Screen, or Prism II Software.

As previously described, when you are connecting the Modular System Manager to a Networked System, the Modular System Manager is connected to the communications and power loop of the system via modular cables. These cables simply plug into the System Manager board and to any device with modular connectors on any local loop on the system. Devices with modular connectors include the Power/Comm Distribution Board, VAV/Zone controller, and MiniLink Polling Device. By using these plug-in connections, wiring errors are virtually eliminated and system installation is fast and easy. See Figure 4 below for typical connection information. See Figure 5 on page 6 for typical Power/Comm board wiring and connection information.

When the System Manager is to be connected to a Stand Alone system, a 12-foot cable with modular connectors on one end and stripped wire ends on the other end is provided for this purpose. This is used to facilitate connecting communications and power wiring to the Modular System Manager from a 24 VAC power source and to the HVAC unit controller communication wiring terminals. See Figure 6 on page 7 for wiring details. If the supplied cable wire is not long enough for your installation, a standard modular cable of the correct length can be purchased through WattMaster and one of the modular connectors can be cut off to allow for the transformer and communication terminal wiring connections. It is recommended that you do not splice the communications wire if at all possible. The transformer should be rated at 6 VA minimum power output.

![Figure 4: Modular System Manager - Networked](image-url)
WARNING!
DO NOT GROUND THE 24V TRANSFORMER THAT IS TO BE USED WITH THE POWER/COMM BOARDS. GROUNDING OF THE TRANSFORMER WILL DAMAGE THE POWER/COMM BOARD AND ALL BOARDS CONNECTED TO IT. A SEPARATE TRANSFORMER MUST BE USED FOR EACH POWER/COMM BOARD. NO EXCEPTIONS. DO NOT CONNECT ANY OTHER DEVICES TO THE TRANSFORMER USED FOR THE POWER/COMM BOARD!

A Power/Comm Cable Can Be Used To Connect With The MiniLink PD Instead Of Using 2 Conductor Twisted Pair With Shield Cable. You Can Also Use A Power/Comm Cable To Connect With Another Power/Comm Board, A System Manager Or A VAV/Zone Controller.

If Desired, Instead Of Using A Power/Comm Cable, You Can Use 2 Conductor Twisted Pair With Shield Cable To Connect To The Power/Comm Board From The VCM-X / RNE Controller, MiniLink PD, Or Another Power/Comm Board.

NOTE:
Diagram Shown Is For Wiring Of Power/Comm Board When Used For Connecting Local Loop Devices Such As VAV/Zone Controllers, System Manager(s) and Other Power/Comm Boards.

Figure 5: Typical Power/Comm Board Wiring
NOTE: If desired a Power/Comm board as used with the networked system can be installed and wired instead of using the pigtail cable wiring shown below. See the networked system wiring diagram for details.

Use supplied modular cable with stripped ends for connection to terminal block and transformer.

- WHITE (T)
- DRAIN WIRE (SHLD)
- BLACK (R)
- RED (24 VAC)
- BROWN (GND)
- GREEN (GND)

Class 2 transformer rated for 6 VA minimum.

NOTE: For stand-alone installations (No CommLink or MiniLink), all TERM jumpers must be ON. For all applications with CommLink(s) or MiniLink(s), all jumpers must be OFF.
Operator Interfaces Comparison

In order to configure and program the Orion System controllers, you must have an Operator’s Interface or a personal computer with the Prism II computer front-end software installed. Three different Operator Interfaces are available for programming of the Orion Controls System—the Modular Service Tool, the Modular System Manager (VCM-X and VAV/Zone Controllers only), and/or the System Manager TS II. These devices allow you to access the status and setpoints of the controllers on your communications loop. This manual describes the Modular Service Tool and Modular System Manager. If using the System Manager TS II, please see the System Manager TS II Technical Guide.

The Modular Service Tool and System Manager allow you to view any temperature or output condition and change any setpoint to fine-tune the operations of the total system. All keypad operations are simple and straightforward, utilizing non-cryptic plain English messages.

Display Screens & Data Entry Keys

The System Manager’s and Modular Service Tool’s display screens are very similar. For most setpoints and modes, there are only a few differences in the function of the keypads. In this manual, when there are differences in the keypad input or the screens between the two operator’s interfaces, both screens or keypads will be shown. See the chart below for a list of the keypad descriptions and functions.

<table>
<thead>
<tr>
<th>Keypad Description</th>
<th>Key Function</th>
<th>System Manager</th>
<th>Modular Service Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC</td>
<td>Use this key to exit from screens or from data entry or to return to the Main Menu from any screen in the system.</td>
<td>Same function as System Manager</td>
<td></td>
</tr>
<tr>
<td>ENTER</td>
<td>Use this key to close a data entry field and advance to the next item or screen.</td>
<td>Same function as System Manager</td>
<td></td>
</tr>
<tr>
<td>Clear</td>
<td>If a data entry mistake is made, press this key to clear the data entry field and start over.</td>
<td>Same function as System Manager but also turns off the power to the Service Tool when on the Main Menu Screen</td>
<td></td>
</tr>
<tr>
<td>Minus</td>
<td>If a setpoint with a negative value is required, press this key for the minus sign.</td>
<td>Same function as System Manager</td>
<td></td>
</tr>
<tr>
<td>DEC</td>
<td>Press this key when entering data that requires a decimal point.</td>
<td>Same function as System Manager</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use these keys to step to the next controller on the loop on interconnected or networked systems.</td>
<td>Same function as System Manager</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use these keys to step backward or forward through the screens.</td>
<td>Same function as System Manager</td>
<td></td>
</tr>
</tbody>
</table>
Mode Selection Buttons

Both the System Manager and Modular Service Tool are provided with “Mode Selection Buttons.” These buttons give you instant access to the specific mode desired without having to scroll through several menu screens to get there. The Modular Service Tool has two extra function keys (“Configuration” and “Balance-Test”) that are not available on the System Manager.

<table>
<thead>
<tr>
<th>Button Description</th>
<th>Mode Selection Buttons</th>
<th>Mode Selection Buttons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>System Manager</td>
<td>ModularServiceTool</td>
</tr>
<tr>
<td>STATUS</td>
<td>Pressing this button takes you directly to the controller “Status” screens.</td>
<td>Pressing this button takes you directly to the controller “Status” screens.</td>
</tr>
<tr>
<td>SETPOINTS</td>
<td>Pressing this button takes you directly to the controller “Setpoints” screens and “Configuration” menu.</td>
<td>Pressing this button takes you directly to the controller “Setpoints” screens.</td>
</tr>
<tr>
<td>SCHEDULES</td>
<td>Pressing this button takes you directly to the controller “Schedules” screens.</td>
<td>Pressing this button takes you directly to the controller “Schedules” screens.</td>
</tr>
<tr>
<td>OVERRIDES</td>
<td>Pressing this button takes you directly to the controller “Overridess” screen. See the “Override Button” section on page 12 for a description of this function. See Notes 1 & 2 below.</td>
<td>Pressing this button takes you directly to the controller “Overridess” screen. See the “Override Button” section on page 14 for a description of this function. See Note 1 below.</td>
</tr>
<tr>
<td>ALARMS</td>
<td>Pressing this button takes you directly to the controller “Alarms” screen. See the “Alarms Button” section on page 11 for a description of this function. See Notes 1 & 2 below.</td>
<td>Pressing this button takes you directly to the controller “Alarms” screen. See the “Alarms Button” section on page 13 for a description of this function. See Note 1 below.</td>
</tr>
<tr>
<td>CONFIGURATION</td>
<td>Not Available. Use “Setpoints” Button to access Menu.</td>
<td>Pressing this button takes you directly to the controller “Configuration” screens.</td>
</tr>
<tr>
<td>BALANCE-TEST</td>
<td>Not available.</td>
<td>Pressing this button takes you directly to the controller “Balance-Test” screens.</td>
</tr>
</tbody>
</table>

Service Tool and System Manager

Entering Unit ID (Address)

With both the Modular Service Tool and System Manager, you must enter the ID (Address) of the controller you wish to program.

With the Main Menu Screen displayed, press the function key associated with the operation (setpoints, configuration, etc.) you want to perform. The screen shown above will appear, asking you to enter a unit ID# (controller address). Put in the ID# of the controller you wish to communicate with and then press <ENTER>.

If this is a Network System (the system has a CommLink), the Unit ID is actually two separate numbers combined into one value. The first part of the number contains the Loop Address at which the controller is located. The second part of the number contains the actual controller address. See Examples #1 & #2 below.

If this is a Stand Alone System (system without a CommLink), the Unit ID will be a number between 1 and 59. It is recommended the address be set to 1. See Example #3 below.

EXAMPLE #1
You would like to view the 3rd controller on the 5th loop. Enter “503” as the Unit ID.

EXAMPLE #2
You would like to view the 12th controller on the 24th loop. Enter “2412” as the Unit ID.

EXAMPLE #3
You would like to view the only controller on the loop. Enter “1” as the Unit ID. No loop number is required since there is only one loop.

Press <ENTER> after entering the unit ID. If you are using the Modular Service Tool, you will be taken directly to the first screen for the operation you are trying to program.

Notes:

1. This button only functions when the system is configured for “Network Mode” or “Multiple MGRS Mode.” It will not function in “Stand Alone Mode.”

2. The “Search for Units” function must be performed on the System Manager upon initial system setup before this function will be available. See the “System Manager NM & MM Loop Search” section of this manual for complete instructions on performing a loop search.
System Manager Initialization

Modular System Manager

System Manager Initialization Screens
When the System Manager is powered up, the first screen displays the current version of the software installed in your System Manager and your system’s configuration—Network or Stand-Alone operation.

The screen above will appear a few seconds later. The last line of the display will have the letters SA (Stand-Alone Mode), MM (Multiple System Manager Mode), or NM (Network Mode) followed by the current outdoor air temperature. The System Manager normally ships from the factory set for SA (Stand-Alone Mode). If you do not have a CommLink or MiniLink polling device on your system and have one or more controllers connected and only one System Manager, the system must be set for SA (Stand-Alone Mode). If you have a CommLink or MiniLink PD on your system and only have a single System Manager, the system must be set for NM (Network Mode). If you have a CommLink or MiniLink polling device on your system and have multiple System Managers on your System, the system must be set for MM (Multiple System Managers Mode). If you believe your system is incorrectly configured, please read the instructions that follow. If your system is configured correctly, proceed to the System Manager Network Mode Loop Search section on page 11.

Configuring for Stand-Alone Mode, Multiple System Managers Mode, or Network Mode
The System Manager must be configured for the correct mode of operation for your system. There are 3 modes of operation available for the Orion System—Stand-Alone, Multiple MGRS, and Network Mode. Look at the bottom line of the display as mentioned in the previous paragraph and determine which mode your System Manager is currently set for. If you are using this System Manager on a communications loop that doesn’t have a MiniLink PD or CommLink connected to it and you have a single System Manager on your system, then you need to operate in Stand-Alone Mode. The first two characters on the bottom line of the display should be SA. If you are using this System Manager on a communications loop, have a MiniLink PD or CommLink installed, and have multiple System Managers on your System, the system must be set for MM (Multiple System Managers Mode). If you believe your system is incorrectly configured, please read the instructions that follow. If your system is configured correctly, proceed to the System Manager Network Mode Loop Search section on page 11.

If your display indicates a different mode than the one you need, press <ENTER>. The following screen will appear:

1) Set Time & Date
2) Communications
-) Next Menu
ESC) Exit Menu

Press <2> on the keypad to enter the Communications Screen.

Enter the seven digit passcode “2337377” to access the next screen. These seven digits spell the word “ADDRESS” on your phone keypad.

You will then see the screen below displayed. You must use the keypad to enter the correct number for the mode of operation needed for your system.

For Stand Alone Mode, press <0>.

For Multiple MGRS Mode, enter the address at which you want this particular System Manager to be set. When multiple System Managers are used on a local loop, each must be set with a unique address different from any other device on that loop. You must perform this same operation again for each System Manager installed. If you want one of these System Managers to be able to indicate alarms and overrides for the entire system, you must enter <63> for Network Mode on that particular System Manager.

For Network Mode (or as explained above for Multiple System Managers when one is to be set to indicate alarms and overrides), enter <63>.

Once you have the correct number per the display above displayed, press <ENTER>. The following screen will appear telling you that you have changed the system mode:

You Have Changed The System Manager Mode
Press Any Key To Continue

Press any key on the keyboard to exit this screen.
System Manager NM & MM Mode Loop Search

When the System Manager is configured for Network Mode, a loop search must initially be performed for the System Manager to recognize alarms or overrides. Also, when you have a system that has multiple System Managers and you have one of the System Managers set to (63) Network Mode for alarm and override indication, you must also perform a loop search for that System Manager. This allows the System Manager to be aware of all alarms and overrides for all local loops on the entire system.

NOTE: The Loop Search function is only required when using the System Manager(s), not the Modular Service Tool.

To access the Loop Search Screen, from the Main Menu Screen, press <ENTER>.

Press <→> for Next Menu. The following screen will be displayed:

1) Set Time & Date
2) Communications
 ->) Next Menu
ESC) Exit Menu

Press <2> for Loop Search. The following screen will be displayed:

Loop Search
Current Loop = XX
Loops Found = XX
Searching

The System Manager will now proceed to search all loops to find the MiniLink PDs that are connected to the system. The screen will display the current loop being searched and the number of loops currently found.

Once the search is completed, the following screen will be displayed:

Loop Search
Finished
Loops Found = XX
Press ESC to Exit

The screen will display the number of loops found on your system. The information will be saved into the System Manager’s memory. No further loop searches will be required unless you add an additional MiniLink PD to the Network System.

System Manager Alarm Search

The System Manager can be used to search for all active alarms on the system. You must configure the MiniLink PD to allow for “Alarm Polling” for each controller you want polled for alarms. See the MiniLink PD programming section on page 56 of this manual for setting information.

Press <ALARMS>. The Unit Selection Screen below will be displayed. Enter the Unit ID of any unit on the system and press <ENTER>. The alarm search will begin with the unit you enter. The entire system is searched from this point.

The following screen will appear. The System Manager will search for any active alarms on the entire system.

The System Manager will now proceed to search all loops to find the MiniLink PDs that are connected to the system. The screen will display the current loop being searched and the number of loops currently found.

To clear any alarms that are found, you must fix the problem indicated in the alarm. Once the problem is fixed, the alarm will clear from the screen the next time the unit is polled.
System Manager Override Search
When a space sensor with override option is used with any VAV/Zone Controller or VCM-X Controller, the System Manager can determine and report any controllers that are currently operating in an override condition. This function requires that a MiniLink PD is installed on each loop where the controllers may be located. The MiniLink PD must be configured to allow for “Alarm Polling” for each controller that Override Polling Enabled is desired for this function to work. See the MiniLink PD programming section on page 66 of this manual for setting information.

To access the Space Sensor Overrides Screen, press <OVERRIDES>, located on the System Manager keypad. A screen will appear asking you to enter a unit ID. Enter an ID for any active controller on the system and press <ENTER>. The following screen will appear:

Overrides Screen
SEARCHING!

After the System Manager completes its search, it will list the first unit on the system that is currently in the override mode. Press the < or > button to scroll through all units that are in the Override Mode.

Overrides Screen
Loop = 1 Unit = 59
Override Unit

System Manager Passcodes
Anytime you enter a unit ID with the Modular System Manager, you will be asked for a passcode. Passcodes are not required to view Status Screens. The screen below will appear if this action requires passcode clearance.

THIS ACTION REQUIRES
PASSCODE CLEARANCE
Enter Passcode: XXXX

The System Manager has two levels of user access. Level 1 users are limited to viewing status and/or changing the Time and Date and Operating Schedules. Level 2 users have complete system access. Any status or setpoint field can be read or reset from the System Manager.

These two levels of passcodes are programmable by any Level 2 user. The default Level 1 passcode is “1111” and the default Level 2 passcode is “2222.”

If you wish to change either Level 1 or Level 2 passcodes, please see the instructions that follow.

From the Main Status Screen, press <ENTER>. The following screen will appear:

Press < or > for Next Menu. The following screen will be displayed:

Press <1> for Change Passcodes. The following screen will be displayed:

Enter New Passcode
Level 1.....: XXXX
Level 2.....: XXXX
[Must Be 4 Digits]

This screen allows you to enter new Level 1 or Level 2 passcodes. The actual digits in your passcodes are never displayed. An “X” is used as a place holder for each digit entered. Passcodes must always be four digits in length, so the usable range of numbers is 1000 to 9999.

CAUTION: If you change the Level 2 passcode and cannot remember what it is, you will be locked out of your system!
Modular Service Tool

The Modular Service Tool is very similar to the System Manager in its operations. Two exceptions to this are that unlike the System Manager, the Service Tool does not check the entire system when performing an “Alarm” or “Override” search, and it does not have any passcoding capability.

NOTE: When you press the <Alarms> or <OVERRIDES> button on the Modular Service Tool, it will search only the loop number of the unit ID that you have entered; therefore, you must search each local loop individually to access all alarms or overrides on the system.

Modular Service Tool Initialization Screen

After connecting the Service Tool to the controller with the supplied cable, press <ON>. The following screen will appear:

![Modular Service Tool Initialization Screen](image)

Configuring the Modular Service Tool for Network or Stand-Alone Operation

As with the System Manager, you must determine if the mode displayed is correct for your system. If it is configured for Stand-Alone, Stand Alone Mode will appear on the bottom line of the display. This is the factory default setting. If you are using this tool on a system or controller that does not have a CommLink or MiniLink PD installed, then this is the correct setting, and you can proceed to the desired screen by pressing the menu key or any function key. If you are using this Service Tool on a communications loop and have installed a MiniLink PD or CommLink, then you need to operate in Network Mode, and the bottom line should display the words, Network Mode.

If your display indicates a different mode than the one you need, press <ENTER> and the following screen will appear:

![Configuring the Modular Service Tool](image)

Press <2> to access the Communications Screen.

Enter <0> or <1> to select the proper mode of operation. When you are finished, press <ENTER> to return to the Main Menu.

Modular Service Tool Alarm Search

To search for alarms, press <Alarms>. The Unit Selection Screen will be displayed. Enter the Unit ID of any controller on the system and press <ENTER>. Unlike the System Manager, only the alarms on this loop will be searched, not the entire system.

![Modular Service Tool Alarm Search](image)

After the Modular Service Tool completes its search, it will list the first unit on the local loop whose ID was entered that currently has an active alarm. Press <ENTER> to scroll through all the alarms for controllers on that particular loop. To move to the next controller or back to the previous unit, use the << or >> button to move between controllers with alarms on the loop.

![Modular Service Tool Alarm Search](image)

To clear any alarms that are found, you must fix the problem indicated in the alarm. Once the problem is fixed, the alarm will clear from the screen the next time the unit is polled.
Modular Service Tool Override Search

When a space sensor with override option is used with any VAV/Zone VCM-X, or RNE Controller, the Modular Service Tool can determine and report any controllers that are currently operating in an override condition on the local loop whose ID (Address) has been entered before running the search. This function requires that a MiniLink Polling Device is installed on each loop where the controllers may be located.

To access the Overrides Screen, press <OVERRIDES> from the Modular Service Tool’s keypad. A screen will appear asking you to enter a unit ID. Enter an ID for any active controller on the local loop you wish to search and press <ENTER>. Unlike the System Manager, only the overrides on this loop will be searched, not the entire system. The following screen will appear:

Overrides Screen
SEARCHING!

After the Service Tool completes its search, it will list the first unit on the selected local loop that is currently in the override mode. Press the previous or next button to scroll through all units on the local loop you have selected that are in the Override Mode.

Overrides Screen
Loop = 1 Unit = 59
Override Unit

Setting the Energy Saving Timer

The Modular Service Tool has a built-in timer that can be programmed to shut the Service Tool off after a specified period of time if no buttons are pressed. This is a very useful feature if you are powering the Service Tool from the internal batteries. To access this setting from the Main Status Screen, press <ENTER>. The following screen will appear:

| 1) Set Time & Date |
| 2) Communications |
| 3) Energy Saving |
| ESC) Exit Menu |

Press <3> to access the Energy Saving Screen. The following screen will appear:

Energy Saving
Automatic Power Down
Minutes: xx
Press ESC to Exit

Enter the number of minutes you want the Service Tool to stay active before it automatically powers down. To cancel the automatic power down, enter <99>. After you have entered a number between 1 and 99 minutes, press <ESC> to exit the screen.
Setting Time & Date

Both the Modular Service Tool and Modular System Manager are equipped with a real time clock chip allowing them to maintain the correct time. Once you have programmed the correct time and date, the information is broadcast globally to all controllers on the entire system. The System Manager will also broadcast this information once every day at midnight to synchronize all of the controllers on the system.

Programming Times

From the Main Menu, press <ENTER>. The following screen will appear:

```
1) Set Time & Date
2) Communications
3) Energy Saving
ESC) Exit Menu
```

Press <1> on your keypad to access the Set Time & Date Screens.

Although the times are displayed on the Main Screen in a standard 12-hour format, you must program them using the 24-hour military format. If you configured the VCM-X or RNE Controller to use its own Internal Schedules, the Occupied/Unoccupied modes are calculated on the basis of the current real time clock reading.

Program Time/Date

```
Day (Sunday=0): X
Enter Hr. (0-23): XX
Enter Minutes : XX
```

- **Day** - Enter the Day of the Week (0 to 6)
 Sunday = 0
- **Hours (Hr)** - Enter Hours in 24-Hour Military Format
 (1700 = 5:00 PM)
- **Minutes** - Enter the Minutes
 (0 to 59)

Programming the Date

```
Program Time/Date
Month (1-12): XX
Day (1-31): XX
Year (00-99): XX
```

- **Month** - Enter the Month (1 to 12)
- **Day** - Enter the Day of the Month (1 to 31)
- **Year** - Enter the current Year with two digits (00 to 99)

Daylight Savings

After you have programmed the date, the Daylight Savings Time Auto Adjust Screen will be displayed. If you want the time to be automatically adjusted for daylight savings time, use the arrow key to select Yes, or if not, use the arrow key to select No.

```
Daylight Savings
Auto Adjustment: Yes
Use Left/Right Arrow
```

NOTE: The U.S. government has seen fit recently to arbitrarily determine the switch-over dates each year, so we recommend that you disable this function and manually change the schedules from year to year.

If you enable this operation, be aware that the time will change the first Sunday in April and then switch back the last Sunday in October. These used to be the standard dates that were constant from year to year.
Scheduling

You can access the VCM-X or RNE Controller Scheduling Screens by pressing <SCHEDULES> on either the System Manager (VCM-X only) or the Modular Service Tool. Press the number button for the scheduling function you wish to view.

1) Schedule Override
2) Week Schedules
3) Holidays
ESC) Exit Menu

Week Schedules

Event #1

VCM-X / RNE Schd
Sunday Event #1
Start Time..: XXXX
Stop Time...: XXXX

Event #2

VCM-X / RNE Schd
Sunday Event #2
Start Time..: XXXX
Stop Time...: XXXX

If you are using the internal scheduling capability of the VCM-X or RNE Controller, set the schedule hours and holiday periods from the menu shown above. You can also force the unit to operate continuously in occupied or unoccupied mode by selecting the Schedule Override menu item and entering the desired command.

If you are using an external contact closure to signal the occupied mode, you must access the Week Schedule Screens and set all start and stop times to zero to prevent the internal schedule from turning the equipment on when you don’t want it to operate.

The screens will step through the Start Time and then the Stop Time for each day of the week. You can quit at any point in the process by pressing <ESC>. There are two Start/Stop events available per day, so the screen will show which event is being programmed. If you need only one event, keep Event #2’s times set at ZERO.

NOTE: The second line displays which day of the week is currently being programmed. The day of the week automatically increments as you exit the Event #2 screen for the day and continue to the next day’s Event #1 screen.

CAUTION: The controller ships with all schedules set to zero so that the controller will not attempt to heat or cool before you have configured the system.

Holiday Start/Stop Day Selection

VCM-X / RNE Hldy
Holiday # 1
Start Mon/Day.: XXXX
[July 4th = 704]

VCM-X / RNE Hldy
Holiday # 1
Stop Mon/Day.: XXXX
[July 5th = 705]

The screens will step through the fourteen possible holidays, one period at a time. Line 2 shows which holiday is currently being programmed. Since a holiday period can encompass more than one day, you need to program the day the holiday starts and the day the holiday ends. If your holiday only lasts one day, simply set both the Start Day and the Stop Day to the same value. Remember to combine the month and day into a single four-digit value.

EXAMPLE: 704 = July 4th (NOTE: Leading zero not required)
1225 = December 25th

All times are in 24-hour military format, so 5:00 PM would be entered as 1700.

If both the Start and Stop Times are ZERO, the schedule is in a continuous OFF mode. (Use for Remote Signal Contact.)

If both the Start and Stop Times are 2359, the schedule is in a continuous ON mode.
Holiday Scheduling and Schedule Override

Holiday Start/Stop Times

<table>
<thead>
<tr>
<th>VCM-X / RNE Hldy</th>
<th>Holiday Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Event #1:</td>
<td>XXXX</td>
</tr>
<tr>
<td>Stop Event #1:</td>
<td>XXXX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VCM-X / RNE Hldy</th>
<th>Holiday Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Event #2:</td>
<td>XXXX</td>
</tr>
<tr>
<td>Stop Event #2:</td>
<td>XXXX</td>
</tr>
</tbody>
</table>

The fourteen holidays all use the same Start and Stop times which you program on this screen and the next. You must enter the time in 24-hour military format, the same as a regular week schedule.

Normally, the holidays will operate in an unoccupied mode or a reduced schedule mode. There are two start/stop events available on holidays to match the standard schedule number of events.

Schedule Override

<table>
<thead>
<tr>
<th>VCM-X / RNE Ovrd</th>
<th>Schedule Override</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter Override...</td>
<td>X</td>
</tr>
<tr>
<td>[0=Auto 1=ON 2=OFF]</td>
<td></td>
</tr>
</tbody>
</table>

If you want to force the unit to operate in a continuous Occupied or Unoccupied mode, select this menu item to activate the desired method. If a Schedule Override is active, all other methods of schedule control are ignored (Push-Button, Internal, and Remote).

As you can see on the last line of the display, enter <1> to run continuously in the Occupied Mode or <2> to run continuously in the Unoccupied Mode. To restore normal schedule operations, enter <0>.

This override remains in effect until canceled and does not time-out like the Output Overrides do after 10 minutes of no communications.

NOTE: Do not use the Force OFF mode in place of setting all the week schedules to ZERO if you are using a Remote Signal for your scheduling since the Override has priority over the Remote Signal.
The available Configuration Screens for the VCM-X Controller are listed on the next few pages by sequential screen number. When each VCM-X Controller is configured for the first time, it is best to start with screen #1 and proceed to each screen in numerical order until you have viewed all available Configuration Screens. This ensures that you have seen all the available VCM-X Controller configuration possibilities and have the opportunity to change or accept the defaults for each screen.

Once the unit is configured and you decide to change one of the screen options, it is helpful to know what screen number contains the configuration you wish to change. With this in mind, the following is a list of all the VCM-X Configuration Screens in numerical order with a brief listing of the configuration feature available on each screen.

- Screen #1 Duct Static Pressure Control
- Screen #2 Supply Fan Cycle Mode
- Screen #3 HVAC Mode Enable
- Screen #4 HVAC Reset Source
- Screen #5 Reset Interval Rate
- Screen #6 Dehumidification Control
- Screen #7 Dehumidification Priority
- Screen #8 Dehumidification Unoccupied
- Screen #9 Outdoor Humidity Sensor
- Screen #10 Indoor Humidity Sensor
- Screen #11 Heat During Dehumidify
- Screen #12 Economizer Control
- Screen #13 Proof of Flow Input
- Screen #14 Modulating Cooling/Heating
- Screen #15 Modulating Heat Output Signal
- Screen #16 Modulating Heat Reverse Acting
- Screen #17 Modulating Heat Proportional Window
- Screen #18 Modulating Cooling Output Signal
- Screen #19 Digital Compressor Signal
- Screen #20 Modulating Cooling Reverse Acting
- Screen #21 Modulating Cool Proportional Window
- Screen #22 Head Pressure Module Installed (VCM-X Modular/WSHP)
- Screen #23 Full Digital Module Installed/WSHP with Multiple Digital Scroll Compressors OR Dual Digital Module/WSHP with Two Digital Scroll Compressors Installed (VCM-X Modular/WSHP)
- Screen #24 Split Condenser (VCM-X Modular/WSHP)
- Screen #25 Monitor Outdoor Air CFM
- Screen #26 Control Outdoor Air CFM
- Screen #27 Outdoor Duct/Damper Size
- Screen #28 Monitor Return Air CFM
- Screen #29 Return Duct/Damper Size
- Screen #30 Monitor Supply Air CFM
- Screen #31 Supply Duct/Damper Size
- Screen #32 CO₂ Sensor Output Signal
- Screen #33 CO₂ Sensor Maximum Scale
- Screen #34 Building Pressure Modulating Control
- Screen #35 Building Pressure Reverse Acting
- Screen #36 Building Pressure Output Signal
- Screen #37 Heat Pump Control
- Screen #38 Reversing Valve Active For Heat/Cool
- Screen #39 Emergency Shutdown Input
- Screen #40 Return Air Bypass Control
- Screen #41 Broadcast Outdoor Temperature
- Screen #42 Broadcast Outdoor Humidity
- Screen #43 Broadcast Supply Temperature
- Screen #44 Broadcast Status Fan & Heat
- Screen #45 Broadcast Internal Time Clock
- Screen #46 Broadcast Internal Schedule
- Screen #47 Broadcast VAV Boxes Force to Max
- Screen #48 Broadcast VAV Boxes Force to Fixed
- Screen #49 1 HVAC Unit w/Boxes on Multiple Loops
- Screen #50 Unit Uses R410A Refrigerant
- Screen #51 Main Fan Maximum Voltage
- Screens #52-55 Cooling & Heating Staging Delays
- Screens #56-75 Relay Configuration Screens
Configuration Screens

In order to correctly set up the VCM-X Controller, you must first configure several parameters in regard to the type of HVAC unit and system you have installed. Most of these values and operating parameters are only set once at the initial system setup and are never changed.

System Manager Instructions

No matter what screen or menu you’re in, press `<SETPOINTS>`. The Unit Selection Screen will appear, requesting that you enter the unit ID number. **Enter** the correct unit ID number of the VCM-X Controller you want to configure and press `<ENTER>`. You will see the screen shown below.

Press `<2>` to enter Configuration Screen #1.

Modular Service Tool Instructions

No matter what screen or menu you’re in, press `<CONFIGURATION>`. The Unit Selection Screen will appear, requesting that you enter the unit ID number. **Enter** the correct unit ID number of the VCM-X Controller you want to configure and press `<ENTER>`. You will then see Unit Configuration Screen #1.

Configuration Screen #1 - Duct Static Pressure

If the HVAC unit has a Supply Fan that delivers a Constant Volume of air, enter `<0>` for NO. If the HVAC unit has a Supply Fan that delivers a Variable Volume of Air using a VFD or a Bypass Damper, enter `<1>` for YES. Default is YES.

Configuration Screen #2 - Supply Fan Cycle

If you want the HVAC unit’s Supply Fan to run continuously while in the Occupied Mode, regardless of the Heating, Cooling, or Dehumidification Modes, enter `<0>` for NO. Default is NO.

Configuration Screen #3 - HVAC Mode Enable

Enter `<0>` to select the Temperature Sensor that will determine the Heating, Cooling, or Vent Mode of operation. The selections are:

- **Supply Air**
 This is typical for VAV applications. Occupied Cooling with Morning Warm-up.

- **Outdoor Air**
 This is for 100% Outdoor Air (MUA) units. Dehumidification utilizes a Dewpoint Calculation if equipped with an Outdoor Air Humidity Sensor.

- **Space Temperature**
 This is for any unit that conditions a space and is not 100% Outdoor air. Occupied/Unoccupied Heating, Cooling, and Vent Modes of operation.

- **Return Air**
 This selection can be used when an Average Building Temperature (the Return Air Temperature) needs to determine Heating, Cooling, and Vent Modes of operation.

- **Supply Air/Tempering**
 This selection is for VAV “cooling only” applications where because of cold outdoor temperatures, even at minimum damper position, you may need to enable heat to maintain the cooling near its Cooling Supply Air Setpoint. When heat is enabled during this sequence, it will control to a non-adjustable setpoint that is 2ºF less than the Cooling Supply Air Setpoint. Includes a Morning Warm-up sequence.

Configuration Screen #4 - HVAC Reset Source

The Supply Air Heating and Cooling Temperature Setpoints can be reset using various input sources. Default is No Reset. **Enter `<0>`** to change/select the desired Reset Source for Supply Air Temperature Reset. The Single Zone VAV option should be selected in applications where the Supply Fan VFD speed is reset based on the Space Temperature. If you select No Reset, then neither the Supply Air Setpoint nor the Supply Fan VFD Reset will occur. The selections are:

- **No Reset**
- **Space Sensor**
- **Return Air Sensor**
- **Remote Reset Signal**
- **Fan VFD Percentage**
- **Outdoor Sensor**
- **Single Zone (SZ) VAV**
- **SZ VAV with CV Heating**
VCM-X Configuration Screens

Configuration Screen #5 - Reset Interval Rate

VCM-X Cnfg ID 59
Reset Interval Rate...: 20 s
[1-250 Seconds]

If you selected Space or Return Air Temperature Reset in Screen #4, enter a value in seconds between 1-250. This value determines how fast the Supply Air Temperature Setpoint is adjusted as the Reset Source changes. Default is 20 seconds.

Configuration Screen #6 - Dehumidification Control

VCM-X Cnfg ID 59
Dehumidification Control: NO
[0=NO 1=YES]

Enter <1> for YES if your system requires Dehumidification Control. Enter <0> for NO. Default is NO.

Configuration Screen #7 - Dehumidification Priority

VCM-X Cnfg ID 59
Dehumidification Priority: NO
[0=NO 1=YES]

Enter <1> for YES if Dehumidification is a Priority during the Occupied Mode. Priority means that the Cooling stages will activate based on Coil Temperature and Reheat will be used regardless of Heating, Cooling, or Vent Modes of Operation. Enter <0> for NO.

Configuration Screen #8 - Dehumidification Unoccupied

VCM-X Cnfg ID 59
Dehumidification Unoccupied: NO
[0=NO 1=YES]

Enter <1> for YES if Dehumidification is required during the Unoccupied mode. Unoccupied Dehumidification is activated based on Indoor Air Humidity only. Enter <0> for NO. Default is NO.

Configuration Screen #9 - Outdoor Humidity Sensor

VCM-X Cnfg ID 59
Outdoor Humidity Sensor: NO
[0=NO 1=YES]

Enter <1> for YES if the HVAC unit is equipped with an Outdoor Air Humidity Sensor. Enter <0> for NO. Default is NO.

Configuration Screen #10 - Indoor Humidity Sensor

VCM-X Cnfg ID 59
Indoor Humidity Sensor: NO
[0=NO 1=YES]

Enter <1> for YES if the HVAC unit is equipped with an Indoor Air Humidity Sensor. Enter <0> for NO. Default is NO.

Configuration Screen #11 - Heat During Dehumidify

VCM-X Cnfg ID 59
Heat During Dehumidify: NO
[0=NO 1=YES]

Enter <1> for YES if your application needs to use unit heat during Dehumidification to supplement Reheat. If Reheat is not available, this selection will allow unit heat to operate in place of Reheat. Enter <0> for NO. Default is NO.

Configuration Screen #12 - Economizer Control

VCM-X Cnfg ID 59
Economizer Control: NO
[0=NO 1=YES]

Enter <1> for YES if the VCM-X is controlling the Economizer. Enter <0> for NO. Default is NO.
Configuration Screen #13 - Proof of Flow Input

VCM-X Cnfg ID 59
Proof Of Flow
Input: NO
[0=NO 1=YES]

Enter <1> for YES if the unit is equipped with a Proof of Flow Switch and it is connected to the VCM-X. If selected as YES and the Proof of Flow Switch is open, only the Supply Fan Relay will be active. If any other relays such as Heating Stages or Cooling Stages are active, they will be deactivated when the Proof of Flow Switch input is lost. Enter <0> for NO. Default is NO.

Configuration Screen #14 - Modulating Cooling/Heating

VCM-X Cnfg ID 59
Mod Cooling: NO
Mod Heating: NO
[0=NO 1=YES]

Enter <1> for YES if the HVAC unit is controlling Modulating Heating or Modulating Cooling or both. If your HVAC unit is going to use a Modulating Chilled Water Valve or is equipped with a Digital Compressor, you must select YES for Modulating Cooling. If your HVAC is using a Modulating Hot Water Valve, Modulating Steam Valve, or a SCR Controlled Electric Heater, you must select YES for Modulating Heating. This configuration does not apply to MODGAS using the MODGAS Controller. Enter <0> for NO. Default is NO.

Configuration Screen #15 - Modulating Heating Output Signal

VCM-X Cnfg ID 59
Mod Heating
Output Signal: 0
[0=0-10V 1=2-10V]

Enter <0> for a 0-10 VDC signal to a Modulating Heat Source such as a Hot Water Valve or SCR Electric Heater. Enter <1> for a 2-10 VDC signal to a Hot Water Valve or SCR Electric Heater. Default is 0.

Configuration Screen #16 - Modulating Heating Reverse Acting

VCM-X Cnfg ID 59
Mod Heating
Rev Acting: NO
[0=NO 1=YES]

Enter <1> for YES if the Modulating Heat Source requires 0 VDC to open and 10 VDC to close. Enter <0> for NO. Default is NO.

Configuration Screen #17 - Modulating Heating Proportional Window

VCM-X Cnfg ID 59
Mod Heating
Prop. Window.: 10°F
Time Period.: 5 s

The Modulating Heating Proportional Window is the control range of the Modulating Signal above and below the Active Supply Air Setpoint. The larger the Modulating Heating Proportional Window, the smaller the signal adjustment per Time Period will be for each °F the supply air is from the Active Supply Air Temperature Setpoint. The Time Period is the delay before another signal increase or decrease can be made and is user-adjustable. Short Time Periods may cause hunting of the Modulating Signal. Defaults are 10°F and 5 seconds.

Configuration Screen #18 - Modulating Cooling Output Signal

VCM-X Cnfg ID 59
Mod Cooling
Output Signal: 0
[0=0-10V 1=2-10V]

Enter <0> for a 0-10 VDC signal to a Modulating Cool source such as a Chilled Water Valve. Enter <1> for a 2-10 VDC signal to a Chilled Water Valve. Default is 0.

Configuration Screen #19 - Digital Compressor Signal

VCM-X Cnfg ID 59
Digital Compressor
Signal 1-5V : NO
[0=NO 1=YES]

Enter <1> for YES if the HVAC unit is equipped with a Digital Compressor. Enter <0> for NO. Default is NO.
VCM-X Configuration Screens

Configuration Screen #20 - Modulating Cooling Reverse Acting

VCM-X Cnfg ID 59
Mod Cooling
Rev Acting: NO
[0=NO 1=YES]

Enter <1> for YES if the Modulating Cooling Source requires 0 VDC to open and 10 VDC to close. You cannot use a Reverse Acting Signal if a Digital Compressor is being used. Enter <0> for NO. Default is NO.

Configuration Screen #21 - Modulating Cooling Proportional Window

VCM-X Cnfg ID 59
Mod Cooling
Prop. Window.: 10°F
Time Period.: 30 s

The Modulating Cooling Proportional Window is the control range of the Modulating Signal above and below the Active Supply Air Setpoint. The larger the Modulating Cooling Proportional Window, the smaller the signal adjustment per Time Period will be for each °F the supply air is from the Active Supply Air Temperature Setpoint. The Time Period is the delay before another signal increase or decrease can be made and is user-adjustable. Short Time Periods may cause hunting of the Modulating Signal. Defaults are 10°F and 30 seconds.

Configuration Screen #22 - Head Pressure Module Installed

VCMX-M/HP Cnfg ID 102
Head Pressure Module Installed: NO
[0=NO 1=YES]

Enter <1> for YES if you have a Head Pressure Module installed. Enter <0> for NO. This screen only applies if using the VCM-X Modular or WSHP Controller. Default is NO.

Configuration Screen #23 - Full Digital Module/WSHP w/Multiple Digital Scroll Compressors OR Dual Digital Module/WSHP w/2 Digital Scroll Compressors Installed

VCMX-M/HP Cnfg ID 102
Full Digital Module Installed: NO
[0=NO 1=YES]

If a VCM-X Modular Controller (OE332-23-VCMX-MOD-A) or VCM-X WSHP Controller (OE332-23-VCMX-WSHP-A) is being used, this screen will appear. Enter <1> for YES if you have either a Full Digital Module installed or if you have a Water Source Heat Pump Module installed and in both cases all the compressors in the unit are Digital Scroll Compressors (2 Digital Compressors only or all 4 Digital Compressors). If you have a combination of Digital Compressors and Fixed Compressors, enter <0> for NO.

VCMX-M/HP Cnfg ID 102
Dual Digital Module Installed: NO
[0=NO 1=YES]

If a VCM-X Modular Controller (OE332-23-VCMX-MOD-C) or VCM-X WSHP Controller (OE332-23-VCMX-WSHP-C) is being used, this screen will appear. Enter <1> for YES if you have a Dual Digital Module installed or if the VCM-X WSHP Controller has two Digital Scroll Compressors. Enter <0> for NO.

Configuration Screen #24 - Split Condenser

VCMX-M/HP Cnfg ID 102
Is this a Split Condenser: NO
[0=NO 1=YES]

Enter <1> for YES if you have a Split Condenser with two physically separate condenser sections. This requires a Two Condenser Head Pressure Module. Enter <0> for NO. This screen only applies if using the VCM-X or WSHP Modular Controller. Default is NO.
Configuration Screen #25 - Monitor Outdoor Air CFM

VCM-X Cnfg ID 59
Monitor Outdoor Air CFM: NO
[0=NO 1=YES]

Enter <1> for YES if you have an Airflow Monitoring station measuring the CFM of the Outdoor airflow stream of this unit. Enter <0> for NO. Default is NO.

Configuration Screen #26 - Control Outdoor Air CFM

VCM-X Cnfg ID 59
Control Outdoor Air CFM: NO
[0=NO 1=YES]

Enter <1> for YES if you want to control the Outdoor Air Damper to a CFM setpoint. Enter <0> for NO. Default is NO.

Configuration Screen #27 - Outdoor Duct/Damper Size

VCM-X Cnfg ID 59
Outdoor Duct/Damper Size: 0.00
[Area in sq. ft.]

For the controller to properly calculate the outside air CFM you need to enter the inside area (sq. ft.) of the outdoor air duct/damper. When measuring the outdoor air damper area, be sure to measure the inside dimensions of the damper. The more accurate the measurements, the more accurate the CFM reading will be. This value needs to be accurate to 2 decimal places. Default is 0.00.

Configuration Screen #28 - Monitor Return Air CFM

VCM-X Cnfg ID 59
Monitor Return Air CFM: NO
[0=NO 1=YES]

Enter <1> for YES if you have an airflow monitoring station measuring the CFM of the return airflow stream of this unit. Enter <0> for NO. Default is NO.

Configuration Screen #29 - Return Duct/Damper Size

VCM-X Cnfg ID 59
Return Duct/Damper Size: 0.00
[Area in sq. ft.]

For the controller to properly calculate the return air CFM, you need to enter the area in square feet of the return air duct/damper. When measuring the return air damper area, be sure to measure the inside dimensions of the damper. The more accurate the measurements, the more accurate the CFM reading will be. This value needs to be accurate to 2 decimal places. Default is 0.00.

Configuration Screen #30 - Monitor Supply Air CFM

VCM-X Cnfg ID 59
Monitor Supply Air CFM: NO
[0=NO 1=YES]

Enter <1> for YES if you have an airflow monitoring station measuring the CFM of the supply airflow stream of this unit. Enter <0> for NO. Default is NO.

Configuration Screen #31 - Supply Duct/Damper Size

VCM-X Cnfg ID 59
Supply Duct/Damper Size: 0.00
[Area in sq. ft.]

For the controller to properly calculate the supply air CFM, you need to enter the area in square feet of the supply air duct/damper. When measuring the supply duct damper area, be sure to measure the inside dimensions of the damper. The more accurate the measurements, the more accurate the CFM reading will be. This value needs to be accurate to 2 decimal places. Default is 0.00.
VCM-X Configuration Screens

Configuration Screen #32 - CO₂ Sensor Output Signal

VCM-X Cnfsg ID 59
CO₂ Sensor
Output Signal: 0
[0=None 1=mA 2=VDC]

The VCM-X needs to know what type of CO₂ sensor signal output is being provided. Enter <2> for a 0-10 VDC CO₂ sensor signal (standard sensor used). Enter <1> for a 4-20 mA CO₂ sensor signal. Enter <0> if no CO₂ sensor is used. Default is None.

Configuration Screen #33 - CO₂ Sensor Maximum Scale

VCM-X Cnfsg ID 59
CO₂ Sensor Maximum Scale: 2000 PPM
Enter 0 If No Sensor

Default is 2000 PPM. The VCM-X needs to know the CO₂ Sensor scaling for proper reading of the CO₂ Sensor output. The Standard CO₂ Sensor should be scaled to 2000 PPM. Enter <0> if no CO₂ sensor is used. Default is 2000.

Configuration Screen #34 - Building Pressure Modulating Control

VCM-X Cnfsg ID 59
Building Pressure Mod Control: NO
[0=NO 1=YES]

Enter <1> for YES if Modulating Building Pressure Control is needed. Modulating Building Pressure Control is used for a VFD Exhaust Fan or a Modulating Exhaust Fan Damper Actuator for Direct Acting Building Pressure Control. Modulating Building Pressure Control is also used for a modulating outdoor air damper actuator for Reverse Acting Building Pressure Control. Enter <0> for NO if Modulating Building Pressure Control is not needed when using a Constant Volume Exhaust Fan for On/Off Control. Default is NO.

Configuration Screen #35 - Building Pressure Reverse Acting

VCM-X Cnfsg ID 59
Building Pressure Rev Acting: NO
[0=NO 1=YES]

Enter <1> for YES if Reverse Acting Building Pressure control is needed. Reverse Acting Building Pressure Control can either be On/Off or Modulating Control. Modulating Control is normally used for this configuration. On a drop in Building Pressure, below the Building Static Pressure Setpoint, the Outdoor Air Damper will modulate open to increase pressure. Enter <0> for NO. Default is NO.

Configuration Screen #36 - Building Pressure Output Signal

VCM-X Cnfsg ID 59
Building Pressure Output Signal: 0
[0=0-10V 1=2-10V]

This Screen is used to configure the Building Pressure Output Signal voltage needed for your application. You can select either a 0-10 VDC signal (default) or enter <1> to make the output signal 2-10 VDC as required by the device you are using to control the pressure. Enter <0> for 0-10 VDC. Default is 0.

Configuration Screen #37 - Heat Pump Control

VCM-X Cnfsg ID 59
Heat Pump Control: NO
[0=NO 1=YES]

Enter <1> for YES if the HVAC unit is a Heat Pump. Enter <0> for NO. Default is NO.

Configuration Screen #38 - Reversing Valve Active During Heat/Cool

VCM-X Cnfsg ID 59
Rev. Valve Active For: Cool
[0=Heat 1=Cool]

Enter <0> for Heat if your Heat Pump unit activates its Reversing Valve during Heating operation. Enter <1> for Cool if your Heat Pump unit activates its Reversing Valve during Cooling operation. Default is Heat.
Configuration Screen #39 - Emergency Shutdown Input

<table>
<thead>
<tr>
<th>VCM-X Cnfg ID 59</th>
<th>Emergency Shutdown Input: NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0=NO 1=YES]</td>
</tr>
</tbody>
</table>

Enter <1> for YES if a Smoke Detector/Firestat or other Emergency Shutdown input is connected to the binary input. If the Emergency Shutdown input is active, the Supply Fan, Heating and Cooling Relay Outputs will be disabled. Enter <0> for NO. Default is NO.

Configuration Screen #40 - Return Air Bypass Control

<table>
<thead>
<tr>
<th>VCM-X Cnfg ID 59</th>
<th>Return Air Bypass Control: NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0=NO 1=YES]</td>
</tr>
</tbody>
</table>

Enter <1> for YES if your HVAC unit requires Return Air Bypass Control for Dehumidification Reheat. Enter <0> for NO. Default is NO.

Configuration Screen #41 - Broadcast OA Temp

<table>
<thead>
<tr>
<th>VCM-X Cnfg ID 59</th>
<th>Broadcast Outdoor Temperature: NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0=NO 1=YES]</td>
</tr>
</tbody>
</table>

The VCM-X can broadcast its Outdoor Air Temperature Reading to other HVAC units if they are not equipped with their own Outdoor Air Temperature sensors. A network communications device is needed in order for this feature to operate. Enter <1> for YES - Broadcast Outdoor Temperature. Enter <0> for NO. Default is NO.

Configuration Screen #42 - Broadcast OA Humidity

<table>
<thead>
<tr>
<th>VCM-X Cnfg ID 59</th>
<th>Broadcast Outdoor Humidity: NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0=NO 1=YES]</td>
</tr>
</tbody>
</table>

The VCM-X can broadcast its Outdoor Air Humidity reading to other HVAC units if they are not equipped with their own Outdoor Air Humidity sensors. A network communications device is required in order for this feature to operate. Enter <1> for YES - Broadcast Outdoor Humidity. Enter <0> for NO. Default is NO.

Configuration Screen #43 - Broadcast Supply Temperature

<table>
<thead>
<tr>
<th>VCM-X Cnfg ID 59</th>
<th>Broadcast Supply Temperature: YES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0=NO 1=YES]</td>
</tr>
</tbody>
</table>

This broadcast sends the VCM-X’s Supply Air Temperature to all controllers on its local loop. This broadcast needs to be configured on a VAV or Zoning System using the VCM-X with Orion VAV/Zone Controllers. A network communications device is required in order for this feature to operate. Enter <1> for YES or <0> to NO. Default is NO.

Configuration Screen #44 - Broadcast Status Fan & Heat

<table>
<thead>
<tr>
<th>VCM-X Cnfg ID 59</th>
<th>Broadcast Status Fan & Heat: NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0=NO 1=YES]</td>
</tr>
</tbody>
</table>

This broadcast sends the VCM-X’s Supply Fan and Heating Status to all controllers on its local loop. This broadcast needs to be configured on a VAV or Zoning System using the VCM-X with Orion VAV/Zone Controllers. A network communications device is required in order for this feature to operate. Enter <1> for YES or <0> for NO. Default is NO.

Configuration Screen #45 - Broadcast Internal Time Clock

<table>
<thead>
<tr>
<th>VCM-X Cnfg ID 59</th>
<th>Broadcast Internal Time Clock: NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0=NO 1=YES]</td>
</tr>
</tbody>
</table>

This broadcast sends the time from the VCM-X’s Internal Time Clock to all controllers on its local loop. This broadcast needs to be configured on a VAV or Zoning System using the VCM-X with Orion VAV/Zone controllers. A network communications device is required in order for this feature to operate, but can also be used to synchronize all controllers on the local loop. Enter <1> for YES or <0> for NO. Default is NO.
Con
fi
guration Screen #46 - Broadcast Internal Schedule

VCM-X Cnfg ID 59
Broadcast Internal Schedule: NO
[0=NO 1=YES]

This is always required when you have VAV/Zone controllers connected to this VCM-X Controller. This will broadcast the Occupied and Unoccupied Condition of the VCM-X Controller to all VAV/Zone controllers on the local loop. Enter <1> for YES or <0> for NO. Default is NO.

Con
fi
guration Screen #47 - Broadcast VAV Boxes Force to Max

VCM-X Cnfg ID 59
Broadcast VAV Boxes Force To Max: YES
[0=NO 1=YES]

This broadcast is to ensure the VAV/Zone Controllers will drive their dampers to the Max Airflow Damper Position during Morning Warm-up. This is important to allow the proper amount of airflow for Heating in the HVAC unit. Enter <1> for YES or <0> for NO. Default is YES.

Con
fi
guration Screen #48 - Broadcast VAV Boxes Force to Fixed

VCM-X Cnfg ID 59
Broadcast VAV Boxes Force To Fixed: NO
[0=NO 1=YES]

Enter <1> for YES to have all broadcasts that have been configured on Configuration Screens 43 through 48 sent to all local loops on the entire system, not just the local loop the VCM-X Controller is on. This is normally only required if you have a large HVAC unit that requires more than the 58 VAV/Zone Controllers normally allowed on the local loop. This allows other VAV/Zone Controllers connected on additional local loops to receive the required broadcasts. This only is allowed when you have a single VCM-X Controller with VAV/Zone Controllers on multiple loops. Other VCM-X or add-on devices may be connected but no other VCM-X with VAV/Zone Controllers can be connected on the system. Enter <0> for NO. Default is NO.

Con
fi
guration Screen #49 - 1 HVAC Unit with Boxes on Multiple Loops

VCM-X Cnfg ID 59
1 HVAC Unit w/ Boxes On Multi. Loops: NO
[0=NO 1=YES]

Enter <1> for YES to have all broadcasts that have been configured on Configuration Screens 43 through 48 sent to all local loops on the entire system, not just the local loop the VCM-X Controller is on. This is normally only required if you have a large HVAC unit that requires more than the 58 VAV/Zone Controllers normally allowed on the local loop. This allows other VAV/Zone Controllers connected on additional local loops to receive the required broadcasts. This only is allowed when you have a single VCM-X Controller with VAV/Zone Controllers on multiple loops. Other VCM-X or add-on devices may be connected but no other VCM-X with VAV/Zone Controllers can be connected on the system. Enter <0> for NO. Default is NO.

Con
fi
guration Screen #50 - Uses R410A Refrigerant

VCM-X Cnfg ID 59
Unit Uses R410A Refrigerant: NO
[0=NO 1=YES]

Enter <1> for YES if your HVAC unit uses R410A Refrigerant. Enter <0> for NO. Default is 1.

Con
fi
guration Screen #51 - Main Fan Maximum Voltage

VCM-X Cnfg ID 59
Max Main Fan Aout Voltage: XX.X VDC

Enter a value between 0.0 and 10.0 VDC for the main fan’s maximum output voltage. The Static Pressure and Output % Status Screen will display 0% to 100%, but the output will range from 0 VDC to the value set in this screen. Default is 0 VDC.

This screen will appear if using a If a VCM-X Modular Controller (OE332-23-VCMX-MOD-A or OE332-23-VCMX-MOD-C) or VCM-X WSHP Controller (OE332-23-VCMX-WSHP-A or OE332-23-VCMX-WSHP-C).
Both the Heating Stages and the DX Cooling Stages utilize Staging Up and Down Delay Periods between stages and Minimum Run Times and Off Times.

Both modes have their own set of Staging and Run Delay Times. The Heating Timer Screens look exactly the same as the Cooling Timer Screens except they reference the Heating settings instead of the Cooling settings.

See the Sequence of Operation Manual for information on how these Delays and Run Times are used.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Stage Up</td>
<td>3 Min</td>
<td>3 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Cooling Stage Down</td>
<td>1 Min</td>
<td>1 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Cooling Min Run Time</td>
<td>5 Min</td>
<td>5 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Cooling Min Off Time</td>
<td>3 Min</td>
<td>3 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Heating Stage Up</td>
<td>3 Min</td>
<td>3 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Heating Stage Down</td>
<td>1 Min</td>
<td>1 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Heating Min Run Time</td>
<td>2 Min</td>
<td>2 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Heating Min Off Time</td>
<td>1 Min</td>
<td>1 Min</td>
<td>15 Min</td>
</tr>
</tbody>
</table>
The available Configuration Screens for the RNE Controller are listed on the next few pages by sequential screen number. When each RNE Controller is configured for the first time, it is best to start with screen #1 and proceed to each screen in numerical order until you have viewed all available Configuration Screens. This ensures that you have seen all the available RNE Controller configuration possibilities and have the opportunity to change or accept the defaults for each screen.

Once the unit is configured and you decide to change one of the screen options, it is helpful to know what screen number contains the configuration you wish to change. With this in mind, the following is a list of all the RNE Controller Configuration Screens in numerical order with a brief listing of the configuration feature available on each screen.

Screen #1 Duct Static Pressure Control
Screen #2 Supply Fan Cycle Mode
Screen #3 HVAC Mode Enable
Screen #4 HVAC Reset Source
Screen #5 Reset Interval Rate
Screen #6 Dehumidification Control
Screen #7 Dehumidification Priority
Screen #8 Dehumidification Unoccupied
Screen #9 Outdoor Humidity Sensor
Screen #10 Indoor Humidity Sensor
Screen #11 Heat During Dehumidify
Screen #12 Economizer Control
Screen #13 Proof of Flow Input
Screen #14 Modulating Cooling/Heating
Screen #15 Modulating Heat Output Signal
Screen #16 Modulating Heat Reverse Acting
Screen #17 Modulating Heat Proportional Window
Screen #18 Modulating Cooling Type
Screen #19 RNE Tonnage
Screen #20 Water Source Heat Pump Installed
Screen #21 Modulating Cooling Reverse Acting
Screen #22 Modulating Cool Proportional Window
Screen #23 Head Pressure Module Installed
Screen #24 Monitor Outdoor Air CFM
Screen #25 Control Outdoor Air CFM
Screen #26 Outdoor Duct/Damper Size
Screen #27 Monitor Return Air CFM
Screen #28 Return Duct/Damper Size
Screen #29 Monitor Supply Air CFM
Screen #30 Supply Duct/Damper Size
Screen #31 CO₂ Sensor Output Signal
Screen #32 CO₂ Sensor Maximum Scale
Screen #33 Building Pressure Modulating Control
Screen #34 Building Pressure Reverse Acting
Screen #35 Building Pressure Output Signal
Screen #36 Heat Pump Control
Screen #37 Reversing Valve Active For Heat/Cool
Screen #38 Emergency Shutdown Input
Screen #39 Return Air Bypass Control
Screen #40 Broadcast Outdoor Temperature
Screen #41 Broadcast Outdoor Humidity
Screen #42 Broadcast Supply Temperature
Screen #43 Broadcast Status Fan & Heat
Screen #44 Broadcast Internal Time Clock
Screen #45 Broadcast Internal Schedule
Screen #46 Broadcast VAV Boxes Force to Max
Screen #47 Broadcast VAV Boxes Force to Fixed
Screen #48 1 HVAC Unit w/Boxes on Multiple Loops
Screen #49 Unit Uses R410A Refrigerant
Screen #50 Main Fan Maximum Voltage
Screens #51-54 Cooling & Heating Staging Delays
Screens #54-74 Relay Configuration Screens
Configuration Screens

In order to correctly set up the RNE Controller, you must first configure several parameters in regard to the type of HVAC unit and system you have installed. Most of these values and operating parameters are only set once at the initial system setup and are never changed.

No matter what screen or menu you’re in, press <CONFIGURATION>. The Unit Selection Screen will appear, requesting that you enter the unit ID number.

Enter the correct unit ID number of the RNE Controller you want to configure and press <ENTER>. You will then see Unit Configuration Screen #1.

Configuration Screen #1 - Duct Static Pressure

If the HVAC unit has a Supply Fan that delivers a Constant Volume of air, enter <0> for NO. If the HVAC unit has a Supply Fan that delivers a Variable Volume of Air using a VFD or a Bypass Damper, enter <1> for YES. Default is YES.

Configuration Screen #2 - Supply Fan Cycle

If you want the HVAC unit’s Supply Fan to run during Heating, Cooling, or Dehumidification Modes, enter <1> for YES. If you want the HVAC unit’s Supply Fan to run continuously while in the Occupied Mode, regardless of the Heating, Cooling, or Dehumidification Modes, enter <0> for NO. Default is NO.

Configuration Screen #3 - HVAC Mode Enable

Enter <0> to select the Temperature Sensor that will determine the Heating, Cooling, or Vent Mode of operation. The selections are:

- **Supply Air**
 This is typical for VAV applications. Occupied Cooling with Morning Warm-up.

- **Outdoor Air**
 This is for 100% Outdoor Air (MUA) units. Dehumidification utilizes a Dewpoint Calculation if equipped with an Outdoor Air Humidity Sensor.

- **Space Temperature**
 This is for any unit that conditions a space and is not 100% Outdoor air. Occupied/Unoccupied Heating, Cooling, and Vent Modes of operation.

- **Return Air**
 This selection can be used when an Average Building Temperature (the Return Air Temperature) needs to determine Heating, Cooling, and Vent Modes of operation.

- **Supply Air/Tempering**
 This selection is for VAV “cooling only” applications where because of cold outdoor temperatures, even at minimum damper position, you may need to enable heat to maintain the cooling near its Cooling Supply Air Setpoint. When heat is enabled during this sequence, it will control to a non-adjustable setpoint that is 2°F less than the Cooling Supply Air Setpoint. Includes a Morning Warm-up sequence.

Configuration Screen #4 - HVAC Reset Source

The Supply Air Heating and Cooling Temperature Setpoints can be reset using various input sources. Default is No Reset. Press <0> to change/select the desired Reset Source for Supply Air Temperature Reset. The Single Zone VAV option should be selected in applications where the Supply Fan VFD speed is reset based on the Space Temperature. If you select No Reset, then neither the Supply Air Setpoint nor the Supply Fan VFD Reset will occur. The selections are:

- **No Reset**
- **Space Sensor**
- **Return Air Sensor**
- **Remote Reset Signal**
- **Fan VFD Percentage**
- **Outdoor Sensor**
- **Single Zone (SZ) VAV**
- **SZ VAV with CV Heating**
RNE Configuration Screens

Configuration Screen #5 - Reset Interval Rate

RNE Cnfg ID 101
Reset Interval Rate...: 20 s
[1-250 Seconds]

If you selected Space or Return Air Temperature Reset in Screen #4, enter a value in seconds between 1-250. This value determines how fast the Supply Air Temperature Setpoint is adjusted as the Reset Source changes. Default is 20 seconds.

Configuration Screen #6 - Dehumidification Control

RNE Cnfg ID 101
Dehumidification Control: NO
[0=NO 1=YES]

Enter <1> for YES if your system requires Dehumidification Control. Enter <0> for NO. Default is NO.

Configuration Screen #7 - Dehumidification Priority

RNE Cnfg ID 101
Dehumidification Priority: NO
[0=NO 1=YES]

Enter <1> for YES if Dehumidification is a Priority during the Occupied Mode. Priority means that the Cooling stages will activate based on Coil Temperature and Reheat will be used regardless of Heating, Cooling, or Vent Modes of Operation. Enter <0> for NO.

Configuration Screen #8 - Dehumidification Unoccupied

RNE Cnfg ID 101
Dehumidification Unoccupied: NO
[0=NO 1=YES]

Enter <1> for YES if Dehumidification is required during the Unoccupied mode. Unoccupied Dehumidification is activated based on Indoor Air Humidity only. Enter <0> for NO. Default is NO.

Configuration Screen #9 - Outdoor Humidity Sensor

RNE Cnfg ID 101
Outdoor Humidity Sensor: NO
[0=NO 1=YES]

Enter <1> for YES if the HVAC unit is equipped with an Outdoor Air Humidity Sensor. Enter <0> for NO. Default is NO.

Configuration Screen #10 - Indoor Humidity Sensor

RNE Cnfg ID 101
Indoor Humidity Sensor: NO
[0=NO 1=YES]

Enter <1> for YES if the HVAC unit is equipped with an Indoor Air Humidity Sensor. Enter <0> for NO. Default is NO.

Configuration Screen #11 - Heat During Dehumidify

RNE Cnfg ID 101
Heat During Dehumidify: NO
[0=NO 1=YES]

Enter <1> for YES if your application needs to use unit heat during Dehumidification to supplement Reheat. If Reheat is not available, this selection will allow unit heat to operate in place of Reheat. Enter <0> for NO. Default is NO.

Configuration Screen #12 - Economizer Control

RNE Cnfg ID 101
Economizer Control: NO
[0=NO 1=YES]

Enter <1> for YES if the RNE is controlling the Economizer. Enter <0> for NO. Default is NO.
Configuration Screen #13 - Proof of Flow Input

RNE Cnfg ID 101
Proof Of Flow
Input: NO
[0=NO 1=YES]

Enter <1> for YES if the unit is equipped with a Proof of Flow Switch and it is connected to the RNE. If selected as YES and the Proof of Flow Switch is open, only the Supply Fan Relay will be active. If any other relays such as Heating Stages or Cooling Stages are active, they will be deactivated when the Proof of Flow Switch input is lost. Enter <0> for NO. Default is NO.

Configuration Screen #14 - Modulating Cooling/Heating

RNE Cnfg ID 101
Mod Cooling: NO
Mod Heating: NO
[0=NO 1=YES]

Enter <1> for YES if the HVAC unit is controlling Modulating Heating or Modulating Cooling or both. If your HVAC unit is going to use a Modulating Chilled Water Valve or is equipped with a VFD Compressor, you must select YES for Modulating Cooling. If your HVAC is using a Modulating Hot Water Valve, Modulating Steam Valve, or a SCR Controlled Electric Heater, you must select YES for Modulating Heating. This configuration does not apply to MODGAS using the MODGAS II Controller. Enter <0> for NO. Default is NO.

Configuration Screen #15 - Modulating Heating Output Signal

RNE Cnfg ID 101
Mod Heating
Output Signal.: 0
[0=0-10V 1=2-10V]

Enter <0> for a 0-10 VDC signal to a Modulating Heat Source such as a Hot Water Valve or SCR Electric Heater. Enter <1> for a 2-10 VDC signal to a Hot Water Valve or SCR Electric Heater. Default is 0.

Configuration Screen #16 - Modulating Heating Reverse Acting

RNE Cnfg ID 101
Mod Heating
Rev Acting: NO
[0=NO 1=YES]

Enter <1> for YES if the Modulating Heat Source requires 0 VDC to open and 10 VDC to close. Enter <0> for NO. Default is NO.

Configuration Screen #17 - Modulating Heating Proportional Window

RNE Cnfg ID 101
Mod Heating
Prop. Window.: 10°F
Time Period.: 5 s

The Modulating Heating Proportional Window is the control range of the Modulating Signal above and below the Active Supply Air Setpoint. The larger the Modulating Heating Proportional Window, the smaller the signal adjustment per Time Period will be for each °F the supply air is from the Active Supply Air Temperature Setpoint. The Time Period is the delay before another signal increase or decrease can be made and is user-adjustable. Short Time Periods may cause hunting of the Modulating Signal. Defaults are 10°F and 5 seconds.

Configuration Screen #18 - Modulating Cooling Type

RNE Cnfg ID 101
Mod Cooling Type

None
[Press ‘0’ to Change]

Press <0> to change/select the desired Modulating Cooling Type. Default is None. The selections are:

- None
- VFD Half
- VFD Full
- 0-10 VDC CW
- 2-10 VDC CW
Configuration Screen #19 - RNE Tonnage

Press <0> to change/select the desired Tonnage. Default is 55–75 Tons. The selections are:
- 55–75 Tons
- 95–105 Tons
- 120–140 Tons

Configuration Screen #20 - Water Source Heat Pump Installed

Enter <1> for YES if this is a Water Source Heat Pump. Enter <0> for NO. Default is NO.

Configuration Screen #21 - Modulating Cooling Reverse Acting

Enter <1> for YES if the Modulating Cooling Source requires 0 VDC to open and 10 VDC to close. You cannot use a Reverse Acting Signal if a VFD Compressor is being used. Enter <0> for NO. Default is NO.

Configuration Screen #22 - Modulating Cooling Proportional Window

The Modulating Cooling Proportional Window is the control range of the Modulating Signal above and below the Active Supply Air Setpoint. The larger the Modulating Cooling Proportional Window, the smaller the signal adjustment per Time Period will be for each °F the supply air is from the Active Supply Air Temperature Setpoint. The Time Period is the delay before another signal increase or decrease can be made and is user-adjustable. Short Time Periods may cause hunting of the Modulating Signal. Defaults are 10°F and 30 seconds.

Configuration Screen #23 - Head Pressure Module Installed

Enter <1> for YES if you have a Head Pressure Module installed. Enter <0> for NO. This screen only applies if using the RNE Modular or WSHP Controller. Default is NO.

Configuration Screen #24 - Monitor Outdoor Air CFM

Enter <1> for YES if you have an Airflow Monitoring station measuring the CFM of the Outdoor airflow stream of this unit. Enter <0> for NO. Default is NO.

Configuration Screen #25 - Control Outdoor Air CFM

Enter <1> for YES if you want to control the Outdoor Air Damper to a CFM setpoint. Enter <0> for NO. Default is NO.

Configuration Screen #26 - Outdoor Duct/Damper Size

For the Controller to properly calculate the outside air CFM you need to enter the inside area (sq. ft.) of the outdoor air duct/damper. When measuring the outdoor air damper area, be sure to measure the inside dimensions of the damper. The more accurate the measurements, the more accurate the CFM reading will be. This value needs to be accurate to 2 decimal places. Default is 0.00.
RNE Configuration Screens

Configuration Screen #27 - Monitor Return Air CFM

<table>
<thead>
<tr>
<th>RNE Cnfg ID 101</th>
<th>Monitor Return Air CFM: NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0=NO 1=YES]</td>
</tr>
</tbody>
</table>

Enter <1> for YES if you have an airflow monitoring station measuring the CFM of the return airflow stream of this unit. Enter <0> for NO. Default is NO.

Configuration Screen #28 - Return Duct/Damper Size

<table>
<thead>
<tr>
<th>RNE Cnfg ID 101</th>
<th>Return Duct/Damper Size: 0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Area in sq. ft.]</td>
</tr>
</tbody>
</table>

For the Controller to properly calculate the return air CFM, you need to enter the area in square feet of the return air duct/damper. When measuring the return air damper area, be sure to measure the inside dimensions of the damper. The more accurate the measurements, the more accurate the CFM reading will be. This value needs to be accurate to 2 decimal places. Default is 0.00.

Configuration Screen #29 - Monitor Supply Air CFM

<table>
<thead>
<tr>
<th>RNE Cnfg ID 101</th>
<th>Monitor Supply Air CFM: NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0=NO 1=YES]</td>
</tr>
</tbody>
</table>

Enter <1> for YES if you have an airflow monitoring station measuring the CFM of the supply airflow stream of this unit. Enter <0> for NO. Default is NO.

Configuration Screen #30 - Supply Duct/Damper Size

<table>
<thead>
<tr>
<th>RNE Cnfg ID 101</th>
<th>Supply Duct/Damper Size: 0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Area in sq. ft.]</td>
</tr>
</tbody>
</table>

For the Controller to properly calculate the supply air CFM, you need to enter the area in square feet of the supply air duct/damper. When measuring the supply duct damper area, be sure to measure the inside dimensions of the damper. The more accurate the measurements, the more accurate the CFM reading will be. This value needs to be accurate to 2 decimal places. Default is 0.00.

Configuration Screen #31 - CO₂ Sensor Output Signal

<table>
<thead>
<tr>
<th>RNE Cnfg ID 101</th>
<th>CO₂ Sensor Output Signal: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0=None 1=mA 2=VDC]</td>
</tr>
</tbody>
</table>

The RNE needs to know what type of CO₂ sensor signal output is being provided. Enter <2> for a 0-10 VDC CO₂ sensor signal (standard sensor used). Enter <1> for a 4-20 mA CO₂ sensor signal. Enter <0> if no CO₂ sensor is used. Default is None.

Configuration Screen #32 - CO₂ Sensor Maximum Scale

<table>
<thead>
<tr>
<th>RNE Cnfg ID 101</th>
<th>CO₂ Sensor Maximum Scale: 2000 PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enter 0 If No Sensor</td>
</tr>
</tbody>
</table>

Default is 2000 PPM. The RNE needs to know the CO₂ Sensor scaling for proper reading of the CO₂ Sensor output. The Standard CO₂ Sensor should be scaled to 2000 PPM. Enter <0> if no CO₂ sensor is used. Default is 2000.
RNE CONFIGURATION

RNE Configuration Screens

Configuration Screen #33 - Building Pressure Modulating Control

```
RNE Cnfg ID 101
Building Pressure
Mod Control: NO
[0=NO 1=YES]
```

Enter <1> for YES if Modulating Building Pressure Control is needed. Modulating Building Pressure Control is used for a VFD Exhaust Fan or a Modulating Exhaust Fan Damper Actuator for Direct Acting Building Pressure Control. Modulating Building Pressure Control is also used for a modulating outdoor air damper actuator for Reverse Acting Building Pressure Control. Enter <0> for NO if Modulating Building Pressure Control is not needed when using a Constant Volume Exhaust Fan for On/Off Control. Default is NO.

Configuration Screen #34 - Building Pressure Reverse Acting

```
RNE Cnfg ID 101
Building Pressure
Rev Acting: NO
[0=NO 1=YES]
```

Enter <1> for YES if Reverse Acting Building Pressure control is needed. Reverse Acting Building Pressure Control can either be On/Off or Modulating Control. Modulating Control is normally used for this configuration. On a drop in Building Pressure, below the Building Static Pressure Setpoint, the Outdoor Air Damper will modulate open to increase pressure. Enter <0> for NO. Default is NO.

Configuration Screen #35 - Building Pressure Output Signal

```
RNE Cnfg ID 101
Building Pressure
Output Signal: 0
[0=0-10V 1=2-10V]
```

This Screen is used to configure the Building Pressure Output Signal voltage needed for your application. You can select either a 0-10 VDC signal (default) or enter <1> to make the output signal 2-10 VDC as required by the device you are using to control the pressure. Enter <0> for 0-10 VDC. Default is 0.

Configuration Screen #36 - Heat Pump Control

```
RNE Cnfg ID 101
Heat Pump
Control: NO
[0=NO 1=YES]
```

Enter <1> for YES if the HVAC unit is a Heat Pump. Enter <0> for NO. Default is NO.

Configuration Screen #37 - Reversing Valve Active During Heat/Cool

```
RNE Cnfg ID 101
Rev. Valve Active
For: Cool
[0=Heat 1=Cool]
```

Enter <0> for Heat if your Heat Pump unit activates its Reversing Valve during Heating operation. Enter <1> for Cool if your Heat Pump unit activates its Reversing Valve during Cooling operation. Default is Heat.

Configuration Screen #38 - Emergency Shutdown Input

```
RNE Cnfg ID 101
Emergency Shutdown
Input: NO
[0=NO 1=YES]
```

Enter <1> for YES if a Smoke Detector/Firestat or other Emergency Shutdown input is connected to the binary input. If the Emergency Shutdown input is active, the Supply Fan, Heating and Cooling Relay Outputs will be disabled. Enter <0> for NO. Default is NO.

Configuration Screen #39 - Return Air Bypass Control

```
RNE Cnfg ID 101
Return Air Bypass Control: NO
[0=NO 1=YES]
```

Enter <1> for YES if your HVAC unit requires Return Air Bypass Control for Dehumidification Reheat. Enter <0> for NO. Default is NO.
RNE CONFIGURATION

RNE Configuration Screens

Configuration Screen #40 - Broadcast OA Temp

| RNE Cnfg ID 101 | Broadcast Outdoor Temperature: NO [0=NO 1=YES] |

The RNE can broadcast its Outdoor Air Temperature Reading to other HVAC units if they are not equipped with their own Outdoor Air Temperature sensors. A network communications device is needed in order for this feature to operate. *Enter <1> for YES - Broadcast Outdoor Temperature.* *Enter <0> for NO. Default is NO.*

Configuration Screen #41 - Broadcast OA Humidity

| RNE Cnfg ID 101 | Broadcast Outdoor Humidity: NO [0=NO 1=YES] |

The RNE can broadcast its Outdoor Air Humidity reading to other HVAC units if they are not equipped with their own Outdoor Air Humidity sensors. A network communications device is required in order for this feature to operate. *Enter <1> for YES - Broadcast Outdoor Humidity. Enter <0> for NO. Default is NO.*

Configuration Screen #42 - Broadcast Supply Temperature

| RNE Cnfg ID 101 | Broadcast Supply Temperature: YES [0=NO 1=YES] |

This broadcast sends the RNE’s Supply Air Temperature to all Controllers on its local loop. This broadcast needs to be configured on a VAV or Zoning System using the RNE with Orion VAV/Zone Controllers. A network communications device is required in order for this feature to operate. *Enter <1> for YES or <0> to NO. Default is NO.*

Configuration Screen #43 - Broadcast Status Fan & Heat

| RNE Cnfg ID 101 | Broadcast Status Fan & Heat: NO [0=NO 1=YES] |

This broadcast sends the RNE’s Supply Fan and Heating Status to all Controllers on its local loop. This broadcast needs to be configured on a VAV or Zoning System using the RNE with Orion VAV/Zone Controllers. A network communications device is required in order for this feature to operate. *Enter <1> for YES or <0> for NO. Default is NO.*

Configuration Screen #44 - Broadcast Internal Time Clock

| RNE Cnfg ID 101 | Broadcast Internal Time Clock: NO [0=NO 1=YES] |

This broadcast sends the time from the RNE’s Internal Time Clock to all Controllers on its local loop. This broadcast needs to be configured on a VAV or Zoning System using the RNE with Orion VAV/Zone Controllers. A network communications device is required in order for this feature to operate, but can also be used to synchronize all Controllers on the local loop. *Enter <1> for YES or <0> for NO. Default is NO.*

Configuration Screen #45 - Broadcast Internal Schedule

| RNE Cnfg ID 101 | Broadcast Internal Schedule: NO [0=NO 1=YES] |

This is always required when you have VAV/Zone Controllers connected to this RNE Controller. This will broadcast the Occupied and Unoccupied Condition of the RNE Controller to all VAV/Zone Controllers on the local loop. *Enter <1> for YES or <0> for NO. Default is NO.*
Configuration Screen #46 - Broadcast VAV Boxes Force to Max

RNE Cnfg ID 101
Broadcast VAV Boxes
Force To Max: YES
[0=NO 1=YES]

This broadcast is to ensure the VAV/Zone Controllers will drive their dampers to the Max Airflow Damper Position during Morning Warm-up. This is important to allow the proper amount of airflow for Heating in the HVAC unit. Enter <1> for YES or <0> for NO. Default is YES.

Configuration Screen #47 - Broadcast VAV Boxes Force to Fixed

RNE Cnfg ID 101
Broadcast VAV Boxes
Force To Fixed: NO
[0=NO 1=YES]

Enter <1> for YES to have all VAV/Zone Controllers connected to this RNE Controller forced to their “Fixed Airflow” Position during the Morning Warm-up Mode of operation. Enter <0> for YES if you do not want this to occur. See the VAV/Zone Controller Setpoint Screens for setting of the “Fixed Airflow” position. Default is NO.

Configuration Screen #48 - 1 HVAC Unit with Boxes on Multiple Loops

RNE Cnfg ID 101
1 HVAC Unit w/ Boxes
On Multi. Loops: NO
[0=NO 1=YES]

Enter <1> for YES to have all broadcasts that have been configured on Configuration Screens 42 through 47 sent to all local loops on the entire system, not just the local loop the RNE Controller is on. This is normally only required if you have a large HVAC unit that requires more than the 58 VAV/Zone Controllers normally allowed on the local loop. This allows other VAV/Zone Controllers connected on additional local loops to receive the required broadcasts. This only is allowed when you have a single RNE Controller with VAV/Zone Controllers on multiple loops. Other RNE or add-on devices may be connected but no other RNE with VAV/Zone Controllers can be connected on the system. Enter <0> for NO. Default is NO.

Configuration Screen #49 - Uses R410A Refrigerant

RNE Cnfg ID 101
Unit Uses R410A Refrigerant: NO
[0=NO 1=YES]

Enter <1> for YES if your HVAC unit uses R410A Refrigerant. Enter <0> for NO. Default is 1.

Configuration Screen #50 - Main Fan Maximum Voltage

RNE Cnfg ID 101
Max Main Fan Aout Voltage: XX.X VDC

Enter a value between 0.0 and 10.0 VDC for the main fan’s maximum output voltage. The Static Pressure and Output % Status Screen will display 0% to 100%, but the output will range from 0 VDC to the value set in this screen. Default is 0 VDC.
Both the Heating Stages and the DX Cooling Stages utilize Staging Up and Down Delay Periods between stages and Minimum Run Times and Off Times.

Both modes have their own set of Staging and Run Delay Times. The Heating Timer Screens look exactly the same as the Cooling Timer Screens except they reference the Heating settings instead of the Cooling settings.

See the Sequence of Operation Manual for information on how these Delays and Run Times are used.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Stage Up</td>
<td>3 Min</td>
<td>3 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Cooling Stage Down</td>
<td>1 Min</td>
<td>1 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Cooling Min Run Time</td>
<td>5 Min</td>
<td>5 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Cooling Min Off Time</td>
<td>3 Min</td>
<td>3 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Heating Stage Up</td>
<td>3 Min</td>
<td>3 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Heating Stage Down</td>
<td>1 Min</td>
<td>1 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Heating Min Run Time</td>
<td>2 Min</td>
<td>2 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Heating Min Off Time</td>
<td>1 Min</td>
<td>1 Min</td>
<td>15 Min</td>
</tr>
</tbody>
</table>
From any menu screen, press <SETPOINTS>. The Unit Selection Screen will appear requesting that you enter the unit ID number. Enter the correct unit ID number of the VCM-X Controller you want to change Setpoints for and press <ENTER>. You will see the screen shown below.

1) Change Setpoint
2) Configure Unit
3) Damper Force
ESC) Exit Menu

Enter <1> on the keypad to display the first unit Setpoint screen.

The available Setpoint Screens for the VCM-X or RNE Controller are listed on the next few pages by sequential screen number. When each VCM-X or RNE Controller is configured for the first time, it is best to start with screen #1 and proceed to each Setpoint Screen in numerical order until you have viewed all available Setpoint Screens. This ensures that you have seen all of the available VCM-X or RNE Controller Setpoint possibilities and have the opportunity to change or accept the defaults for each screen. Once the unit Setpoints are configured and you decide to change one of the screen options, it is helpful to know what screen number contains the configuration you wish to change. With this in mind, the following is a list of all the VCM-X or RNE Setpoint Screens in numerical order with a brief listing of the Setpoint feature available on each screen:

- Setpoint Screen #1: Setpoint Screen Index
- Setpoint Screen #2: HVAC Mode Setpoints
- Setpoint Screen #3: HVAC Mode Select Deadband
- Setpoint Screen #4: Unoccupied Setbacks
- Setpoint Screen #5: SAT Cooling Setpoints
- Setpoint Screen #6: Cool Reset Source Setpoints
- Setpoint Screen #7: SAT Heating Setpoints
- Setpoint Screen #8: Heat Reset Source Setpoints
- Setpoint Screen #9: Stage Control Window
- Setpoint Screen #10: Outdoor Air Lockouts
- Setpoint Screen #11: Cutoff Temperatures Lo SAT & Hi SAT
- Setpoint Screen #12: Minimum Supply Fan VFD Speed For Heating
- Setpoint Screen #13: Morning Warm-up Target Temp & Max Length
- Setpoint Screen #14: Dehumidification Indoor RH & OA
- Setpoint Screen #15: Dewpoint
- Setpoint Screen #16: Dehumidification Coil Temperature
- Setpoint Screen #17: Cooling Head Pressure Setpoint (VCM-X Modular/VCM-X WSHP/RNE)
- Setpoint Screen #18: Reheat Head Pressure Setpoint (VCM-X Modular/VCM-X WSHP/RNE)
- Setpoint Screen #19: Economizer Setpoints OAT/WB Enable
- Setpoint Screen #20: Economizer Setpoints Min Position & Control Rate
- Setpoint Screen #21: Outdoor Air CFM Min & Max Control
- Setpoint Screen #22: Outdoor Air CFM Deadband
- Setpoint Screen #23: Maximum Economizer Position if High CO₂ Level Occurs
- Setpoint Screen #24: CO₂ Protection Limit Max Level & Reset Range
- Setpoint Screen #25: Static Setpoint, Deadband & Control Rate
- Setpoint Screen #26: Building Pressure Setpoint & Deadband
- Setpoint Screen #27: Return Air Bypass Damper Factor Setpoint
- Setpoint Screen #28: Fan Starting Delay Timer
- Setpoint Screen #29: Mechanical Heat Cool Failures Occur After No Change For
- Setpoint Screen #30: Preheat/Low Ambient Temperature
- Setpoint Screen #31: Max OA Damper Tempering Limit
- Setpoint Screen #32: HVAC Schedule
- Setpoint Screen #33: Push-Button Override Duration
- Setpoint Screen #34: HVAC Mode Sensor Slide Offset
- Setpoint Screen #35: Heat Pump Auxiliary Heating Delay
- Setpoint Screen #36: Heat Pump Defrost Temp and Defrost Timer (VCM-X Modular/RNE)
- Setpoint Screen #37: Adaptive Defrost Adjustment (VCM-X Modular/RNE)
- Setpoint Screen #38: Heat Wheel Defrost
- Setpoint Screen #39: Internal Schedule Optimal Start Soak Multiplier
- Setpoint Screen #40: Trend Log Interval
- Setpoint Screen #41: Sensor Calibration For SPC & SAT
- Setpoint Screen #42: Sensor Calibration For RAT & OAT
- Setpoint Screen #43: Sensor Calibration For Coil

VCM-X / RNE Operator Interfaces Technical Guide
VCM-X / RNE Setpoint Screens

Setpoint Screen #1 - HVAC Mode Setpoints

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC Mode Setpoints Cooling</td>
<td>0°F</td>
<td>75°F</td>
<td>99°F</td>
</tr>
<tr>
<td>HVAC Mode Setpoints Heating</td>
<td>0°F</td>
<td>70°F</td>
<td>99°F</td>
</tr>
</tbody>
</table>

These Setpoints are used to determine the Heating, Cooling, or Vent Modes of operation in reference to the HVAC Mode Enable Sensor. If the Supply Air Sensor is configured to be the HVAC Mode Enable, these Setpoints are used in conjunction with the Unoccupied Setbacks if equipped with a Space Temperature Sensor.

Setpoint Screen #2 - HVAC Mode Select Deadband

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC Mode Select Deadband</td>
<td>0°F</td>
<td>1°F</td>
<td>10°F</td>
</tr>
</tbody>
</table>

This Setpoint is added to and subtracted from the HVAC Mode Setpoints. It provides you with flexibility on when the Heating and Cooling Modes should be active above or below the HVAC Mode Setpoints.

Setpoint Screen #3 - Unoccupied Setbacks

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unoccupied Setbacks Cooling</td>
<td>0°F</td>
<td>30°F</td>
<td>30°F</td>
</tr>
<tr>
<td>Unoccupied Setbacks Heating</td>
<td>0°F</td>
<td>30°F</td>
<td>30°F</td>
</tr>
</tbody>
</table>

During the Unoccupied Mode of Operation, these Setpoints spread the HVAC Mode Setpoints out by a user-adjustable amount. Use only positive numbers for these Setpoints. If you do not want Cooling or Heating to operate during the Unoccupied Mode, use the default setting of 30°F for these setpoints.

Setpoint Screen #4 - SAT Cooling Setpoints

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT Cooling Setpoint</td>
<td>40°F</td>
<td>55°F</td>
<td>80°F</td>
</tr>
<tr>
<td>Rst Limit</td>
<td>40°F</td>
<td>55°F</td>
<td>150°F</td>
</tr>
</tbody>
</table>

If no Reset Source has been configured in Configuration Screen #4, then this setpoint will be the Supply Air Temperature Cooling Setpoint. Line 4 will be blank. If a Reset Source has been configured in Configuration Screen #4, then Line 4 will read Rst Limit. Reset is always upward from the SAT setpoint to the Reset Limit setpoint. So, the SAT will be the lowest temperature the Supply Air Setpoint can be reset to and Reset Limit will be the highest temperature the Supply Air Setpoint can be reset to. The Cooling Supply Air Temperature Setpoint will automatically be reset warmer or colder within this range as the Reset Source (next screen) moves within its range.

Setpoint Screen #5 - Cool Reset Source

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool Rst Source SpcHi</td>
<td>75°F</td>
<td>55°F</td>
<td>75°F</td>
</tr>
<tr>
<td>Cool Rst Source SpcLo</td>
<td>75°F</td>
<td>55°F</td>
<td>75°F</td>
</tr>
</tbody>
</table>

If no Reset Source has been configured in Configuration Screen #4, then this screen will read Cool Rst Not Config and will not be used. If a Reset Source has been configured in Configuration Screen #4, then the names of the values on the left side of this screen will correspond to the Reset Source that was configured. This screen will then allow you to input the upper and lower limits for the range of values of the Reset Source on the left side of the screen and will show the corresponding Cooling Supply Air SAT and Rst Limit values that were entered on the previous screen. Single Zone VAV Reset of the Supply Fan VFD is addressed in the last paragraph.

Please note that the SAT and Rst Limit values on the right side of this screen cannot be changed on this screen; they are simply displayed from what was entered on the Setpoint Screen #4. For each line, the value on the left corresponds to the value on the right. So, if the Space Temperature Sensor has been configured as the Reset Source, then when the Space Temperature is at or above the SpcHi Temperature Setpoint, the Supply Air Cooling Setpoint will be reset to its lowest value, the SAT Setpoint. If the Space Temperature is at or below the SpcLo Setpoint, the Supply Air Cooling Setpoint will be reset to its highest value, the Cooling Rst Limit. Then, as the Space Temperature moves from its low value to its high value, the Supply Air Cooling Setpoint will be proportionally reset from its high value to its low value.

Depending on whether reset has been configured or not, the options for the names of the values on the left side of the screen are SpcHi, SpcLo, OatHi, OatLo, RatHi, RatLo, VLT, VFD, NoRST.
In the examples that follow, the desired Space Temperature in Cooling Mode is 75°F:

Space Temperature Cool Reset:
- Space Temperature (SPC Hi) = 75°F, SAT Setpoint (SAT) = 55°F
- Space Temperature (SPC Lo) = 74°F, SAT Setpoint (Rst) = 65°F

VFD Percentage Cool Reset:
- VFD Percentage (VFD) = 70%, SAT Setpoint (SAT) = 55°F
- VFD Percentage (VFD) = 30%, SAT Setpoint (Rst) = 65°F

Input Voltage Cool Reset:
- Input Voltage (VLT) = 0 Volts, SAT Setpoint (SAT) = 55°F
- Input Voltage (VLT) = 10 Volts, SAT Setpoint (Rst) = 65°F

In the Cooling Mode in a Single Zone VAV application, the Supply Fan VFD speed will proportionally modulate as the Space Temperature rises within the range set on this screen. Upon entering the Cooling Mode, the fan will start at 30% and modulate up to 100% as the Space Temperature rises from the SpcLo Setpoint to the SpcHi Setpoint. The SpcLo Setpoint should be the same as the Space Cooling Setpoint (Mode Enable configured in Configuration Screen #4, then this screen will read Heat Rst Not Config and will not be used. If a Reset Source has been configured in Configuration Screen #6, then the names of the values on the left side of this screen will correspond to the Reset Source that was configured. This screen will then allow you to input the upper and lower limits for the range of values of the Reset Source on the left side of the screen and will show the corresponding Heating Supply Air SAT and Rst Limit values that you entered on the previous screen. Single Zone VAV Reset of the Supply Fan VFD is addressed in the last paragraph.

Please note that the SAT and Rst Limit values on the right side of this screen cannot be changed on this screen; they are simply displayed from what was entered on the Setpoint Screen #6. For each line, the value on the left corresponds to the value on the right. So if the Space Temperature Sensor has been configured as the Reset Source, then when the Space Temperature is at or above the SpcHi Temperature Setpoint, the Supply Air Heating Setpoint will be reset to its lowest value, the SAT Setpoint. If the Space Temperature is at or below the SpcLo Setpoint, the Supply Air Heating Setpoint will be reset to its highest value, the Heating Rst Limit. Then, as the Space Temperature moves from its low value to its high value, the Supply Air Heating Setpoint will be proportionally reset from its high value to its low value.

Depending on whether reset has been configured or not, the options for the names of the values on the left side of the screen are SpcHi, SpcLo, OatHi, OatLo, RatHi, RatLo, VLT, VFD, NoRST.

In the examples that follow, the desired Space Temperature in Heating Mode is 71°F:

Space Temperature Heat Reset:
- Space Temperature (SPC Hi) = 71°F, SAT Setpoint (SAT) = 90°F
- Space Temperature (SPC Lo) = 70°F, SAT Setpoint (Rst) = 120°F

VFD Percentage Heat Reset:
- VFD Percentage (VFD) = 30%, SAT Setpoint (SAT) = 90°F
- VFD Percentage (VFD) = 70%, SAT Setpoint (Rst) = 120°F

Input Voltage Heat Reset:
- Input Voltage (VLT) = 0 Volts, SAT Setpoint (SAT) = 90°F
- Input Voltage (VLT) = 10 Volts, SAT Setpoint (Rst) = 120°F

In the Heating Mode in a Single Zone VAV application, the Supply Fan VFD speed will proportionally modulate as the Space Temperature falls within the range set on this screen. Upon entering the Heating Mode, the fan will start at 50% and modulate up to 100% as the Space Temperature falls from the SpcHi Setpoint to the SpcLo Setpoint. The SpcHi Setpoint should be the same as the Space Heating Setpoint (Mode Enable configured from Setpoint Screen #1. The SAT and RST Setpoints on the right side of the screen are not used.
When the VCM-X or RNE is in Cooling Mode, if the Supply Air Temperature drops below the Active Supply Air Temperature Setpoint minus the Cooling Stage Control Window value, a Cooling Stage will be deactivated after its Minimum Run Time. In the Heating Mode, if the Supply Air Temperature rises above the Active Supply Air Temperature Setpoint plus the Heating Stage Control Window value, a Heating stage will be deactivated after its Minimum Run Time. This staging window is also used for the coil temperature during Dehumidification Mode.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage Control Window</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling</td>
<td>5°F</td>
<td>5°F</td>
<td>30°F</td>
</tr>
<tr>
<td>Heating</td>
<td>5°F</td>
<td>5°F</td>
<td>30°F</td>
</tr>
</tbody>
</table>

The VCM-X or RNE will Lockout Mechanical Heating or Cooling when the Outdoor Air (OA) Temperature is above or below these Setpoints.

On Air to Air Heat Pump units, Compressor Cooling and Heating can only operate if the OA Temperature is above the Outdoor Air Cooling Lockouts. If using the VCM-X WSHP (Water Source Heat Pump) Controller, the OA Cooling Lockout is ignored. Since Emergency Heat can only be used below the Compressor Lockouts, Emergency Heat is therefore not available on WSHP units using the VCM-X WSHP Controller.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Supply Fan VFD Speed For Heating</td>
<td>0%</td>
<td>30%</td>
<td>100%</td>
</tr>
</tbody>
</table>

When the VCM-X or RNE is configured for VAV operation and the controller enters the Occupied Mode, the VCM-X or RNE looks at the Return Air Temperature to determine if the unit should initiate Morning Warm-up Mode. If the Return Air Temperature is below the Morning Warm-up Target Temperature and the Max Length is greater than “0,” the VCM-X or RNE will initiate Heating. This is considered Morning Warm-up and will run until the Return Air Temperature rises above the Morning Warm-up Target Temperature or until the Max Length Setpoint time expires.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning Warm Up Target Temp</td>
<td>50°F</td>
<td>72°F</td>
<td>90°F</td>
</tr>
<tr>
<td>Morning Warm Up Max Length</td>
<td>0 Min</td>
<td>60 Min</td>
<td>240 Min</td>
</tr>
</tbody>
</table>
On VAV or CAV configured units that are not using 100% Outdoor Air, when the Indoor Relative Humidity percentage rises above the Indoor RH Setpoint, the unit will start operating in Dehumidification Mode.

If an Indoor Humidity Sensor is installed, the unit will reset the Coil Suction Temperature Setpoint as needed to maintain this Indoor RH Setpoint. This includes VAV, CAV and MUA applications.

On MUA configured units that are using 100% Outdoor Air, when the Outdoor Air Dewpoint Temperature rises above the OA Dewpoint Setpoint, the unit will start operating in Dehumidification Mode.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehumidification Setpoint</td>
<td>1%</td>
<td>50%</td>
<td>100%</td>
</tr>
<tr>
<td>Indoor RH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OA Dewpoint</td>
<td>35°F</td>
<td>55°F</td>
<td>80°F</td>
</tr>
</tbody>
</table>

During the Dehumidification Mode, the VCM-X / RNE uses the calculated Coil Temperature to activate DX Cooling based on this Dehumidification Coil Temperature Setpoint. The VCM-X / RNE uses a Suction Pressure Transducer to read Suction Pressure (the Saturation Vapor Pressure of the Refrigerant) and converts this Suction Pressure reading to a Coil Temperature value. This calculation is based on using R22 or R410A refrigerant only and will not work with any other refrigerant. This setpoint determines the number of compressor stages that need to be activated to maintain the Dehumidification Coil Temperature Setpoint.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehumidification Coil Temperature</td>
<td>35°F</td>
<td>45°F</td>
<td>70°F</td>
</tr>
</tbody>
</table>

If you are using the Head Pressure Module, this is the Cooling Setpoint for control of the condenser fan speed. This is based on the highest head pressure reading of up to 4 Head Pressure Sensors. This screen only applies if using the VCM-X Modular, VCM-X WSHP Controller, or RNE Controller.

See the One Condenser Head Pressure Module Technical Guide, the Two Condenser Head Pressure Module Technical Guide, or the RNE Controller Technical Guide for detailed information.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Head Pressure Setpoint</td>
<td>200 PSI</td>
<td>315 PSI</td>
<td>400 PSI</td>
</tr>
</tbody>
</table>

If you are using the Head Pressure Module, this is the Reheat Setpoint for control of the condenser fan speed during dehumidification. This is based on the highest head pressure reading of up to 4 Head Pressure Sensors. This screen only applies if using the VCM-X Modular, VCM-X WSHP Controller, or RNE Controller.

See the One Condenser Head Pressure Module Technical Guide, the Two Condenser Head Pressure Module Technical Guide, or the RNE Controller Technical Guide for detailed information.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reheat Head Pressure Setpoint</td>
<td>200 PSI</td>
<td>400 PSI</td>
<td>400 PSI</td>
</tr>
</tbody>
</table>
Setpoint Screen #17 - Economizer OAT/WB Enable

If an Outdoor Air Humidity Sensor is not connected to the VCM-X or RNE and the Outdoor Air Temperature falls below this Setpoint, the Economizer can be used for Free Cooling. If an Outdoor Air Humidity Sensor is connected to the VCM-X or RNE, then a Wetbulb Temperature will be calculated and used instead of the Outdoor Air Drybulb Temperature to determine when Free Cooling can be used.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economizer Setpoints</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAT/WB Enable</td>
<td>0°F</td>
<td>55°F</td>
<td>80°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #18 - Economizer Minimum Position & Control Rate

The Economizer (OA Damper) Min Position Setpoint is maintained during the Occupied Mode even if the Economizer is disabled due to the OA Temperature or Wetbulb Temperature being above the Economizer Enable Setpoint. The Control Rate Setpoint allows you to adjust the Economizer to modulate the OA Damper Actuator faster or slower as desired. The Control Rate Setpoint range is 10-99. Larger numbers make the Economizer Outdoor Air Damper Actuator modulate faster, smaller numbers make the Outdoor Air Damper Actuator modulate slower.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economizer Min Position</td>
<td>0%</td>
<td>10%</td>
<td>100%</td>
</tr>
<tr>
<td>Economizer Control Rate</td>
<td>10</td>
<td>90</td>
<td>99</td>
</tr>
</tbody>
</table>

Setpoint Screen #19 - Outdoor Air CFM Control

If controlling the Outdoor Air Damper to a CFM setpoint, this screen allows you to set the design Minimum and Maximum required Outdoor Airflow CFM values for the Air Handler. The OA Max CFM limits the damper operation during CO2 override conditions. K = 1000

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA Minimum CFM</td>
<td>0.10 K</td>
<td>.10 K</td>
<td>200 K</td>
</tr>
<tr>
<td>OA Maximum CFM</td>
<td>0.10 K</td>
<td>.10 K</td>
<td>200 K</td>
</tr>
</tbody>
</table>

Setpoint Screen #20 - Outdoor Air CFM Deadband

The is the deadband above and below the OA CFM Control Setpoint which helps prevent hunting.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA CFM Deadband</td>
<td>0 CFM</td>
<td>10 CFM</td>
<td>20,000 CFM</td>
</tr>
</tbody>
</table>

Setpoint Screen #21 - Economizer Maximum Position if High CO2 Level

This Setpoint allows you to set the Maximum Position the Economizer will open if high CO2 conditions occur in the space. The Maximum Economizer Position Setpoint is used to limit the amount of Outdoor Air that will be introduced to the HVAC unit in order to ensure the unit is operating within its Heating and Cooling design limitations. As shown in the table below, the Minimum setting for this Setpoint is the value previously set for the Economizer Min Position Setpoint.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Economizer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position If High CO2</td>
<td>100%</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>Level Occurs.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Setpoint Screen #22 - CO₂ Protection Limit

When the CO₂ level rises above the CO₂ Protection Limit Max Level, the Economizer’s Minimum Position will begin to reset open proportionally between the CO₂ Protection Limit Max Level Setpoint and the Reset Range Setpoint. The Reset Range value is added to the Max Level value. If the CO₂ levels are equal to or above the Max Level plus the Reset Range, the Economizer will be opened to its Maximum Economizer Position if high CO₂ levels occur.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ Protection Limit</td>
<td>0 PPM</td>
<td>900 PPM</td>
<td>3000 PPM</td>
</tr>
<tr>
<td>Max Level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ Protection Limit</td>
<td>0 PPM</td>
<td>100 PPM</td>
<td>1500 PPM</td>
</tr>
<tr>
<td>Reset Range</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setpoint Screen #23 - Static Setpoint, Deadband & Control Rate

For VAV units, a Supply Fan VFD or Bypass Damper Actuator is used to maintain the Duct Static Pressure Setpoint. The Static Pressure Output Signal varies to control the Static Pressure Setpoint. If the Duct Static Pressure is above the Static Setpoint plus the Deadband, the Static Pressure Output Signal will be reduced at every Control Rate interval. If the Static Pressure is below the Static Setpoint minus the Deadband, the Output signal will be increased at every Control Rate interval.

The Duct Static Pressure Control Output Signal is a non-configurable Direct Acting Signal (0-10 VDC). This can be used to directly connect to a Supply Fan VFD without any modifications.

When you are using a Bypass Damper Actuator to control the Duct Static Pressure, you must set up the Bypass Damper Actuator or the Bypass Damper so that it is Reverse Acting in operation. The Output Signal increases (closes Bypass Damper) if the Duct Static Pressure is below the Duct Static Pressure Setpoint by the Deadband amount and the Output Signal decreases (opens Bypass Damper) if the Static Pressure is above the Setpoint by the Deadband amount.

<table>
<thead>
<tr>
<th>Description</th>
<th>Min.</th>
<th>Default</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Pressure Spt</td>
<td>-0.20"WG</td>
<td>0.10"WG</td>
<td>0.20"WG</td>
</tr>
<tr>
<td>Building Pressure Deadband</td>
<td>0.01"WG</td>
<td>0.02"WG</td>
<td>0.10"WG</td>
</tr>
</tbody>
</table>

Setpoint Screen #24 - Building Pressure

Direct Acting Control

If an Exhaust Fan Relay is configured, when the Building Static Pressure rises above the Building Pressure Setpoint plus the Deadband, the Exhaust Fan Relay will activate. It will remain on until the Building Pressure falls below the Building Pressure Setpoint minus the Deadband. If Modulating Building Pressure is configured, when the Building Static Pressure rises above the Building Pressure Setpoint plus the Deadband, the Building Pressure Output Signal will increase until the Building Static Pressure falls within the Deadband. If the Building Static Pressure falls below the Building Pressure Setpoint minus the Deadband, the Building Pressure Output Signal will decrease until the Building Static Pressure rises within the Deadband. The Building Pressure Output Signal is configurable for 0-10 or 2-10 VDC. For more detailed operation information, see the VCM-X Controller Technical Guide, VCM-X Modular E-BUS Controller Technical Guide, or RNE Controller Technical Guide for the complete Building Pressure Control Sequence of Operation.

Reverse Acting Control

The Building Pressure Output Signal remains a Direct Acting 0-10 or 2-10 VDC signal, but the logic is reversed. On a drop in Building Static Pressure below the Building Pressure Setpoint minus the Deadband, the Building Pressure Output Signal will increase.

Setpoint Screen #25 - RAB Damper Factor

This setpoint is used when your HVAC unit is configured for Return Air Bypass Damper control. The Return Air Bypass Damper Factor Setpoint is a percentage value that is used to calculate the Return Air Damper position in relation to the Return Air Bypass Damper position. This provides a method for adjusting the airflow through the Return Air Bypass Damper.

Increasing this percentage increases the airflow through the Return Air Bypass Damper by causing the Return Air Damper to move further towards its closed position in relation to the Return Air Bypass Damper moving towards its open position.
Decreasing this percentage decreases the airflow through the Return Air Bypass Damper by causing the Return Air Damper to move further towards its open position in relation to the Return Air Bypass Damper moving towards its closed position.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Air Bypass Damper Factor</td>
<td>0%</td>
<td>40%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Setpoint Screen #26 - Supply Fan Starting Delay Timer

This is the Supply Fan Starting Delay Timer initiated whenever the VCM-X / RNE initiates Supply Fan operation. This is useful when you are using multiple VCM-X / RNE-controlled HVAC units and want to be sure that all the units do not start at exactly the same time when the Occupied schedule occurs. Each VCM-X or RNE should be set with staggered Fan Starting Delay Timer Setpoint values. When the 255 Second default setpoint is used, it multiplies each VCM-X or RNE’s address by 5 and uses this value in seconds as the Fan Starting Delay Time. This provides a staggered start for each VCM-X or RNE on the system without having to individually set each VCM-X or RNE for its own time delay.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan Start Delay Timer</td>
<td>0 Sec</td>
<td>255 Sec</td>
<td>255 Sec</td>
</tr>
</tbody>
</table>

Setpoint Screen #27 - Mechanical Heat/Cool Failure Time Period

When Heating or Cooling Mode is initiated and staging is activated, if the Supply Air Temperature does not rise or fall 5°F within the Mechanical Heat/Cool Failures Occur After No Change For Setpoint time period, a Mechanical Heating or Cooling failure alarm will be generated. The Alarm is for Status Reporting only. The HVAC unit will continue to run.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Heat/Cool Failures Occur After No Change For</td>
<td>0 Min</td>
<td>15 Min</td>
<td>255 Min</td>
</tr>
</tbody>
</table>

Setpoint Screen #28 - Preheat/Low Ambient Temperature

For cold climates where freezing temperatures may be experienced, a Pre-Heater relay output can be activated based on the Outdoor Air Temperature to prevent freezing of Water Coils. One of the VCM-X / RNE Relay Outputs must be configured for the Pre-Heater control. When configured, if the Outdoor Air Temperature falls below the Low OAT Ambient Protection Temperature Setpoint and the HVAC unit is in Occupied Mode, the Pre-Heater relay will activate.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preheat/Low Ambient Temperature</td>
<td>0°F</td>
<td>0°F</td>
<td>70°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #29 - Max OA Damper Tempering Limit

The Maximum OA Damper Tempering Limit Setpoint allows you to set the maximum damper position the economizer can open to while the heat is running during the VAV Supply Air tempering mode in this sequence (to prevent potential wasting of energy).

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Outdoor Air Damper Tempering Limit</td>
<td>0%</td>
<td>50%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Setpoint Screen #30 - HVAC Schedule

The VCM-X / RNE has an Internal Scheduler. If you want the VCM-X or RNE to use its own Internal Schedule to schedule the HVAC unit, enter `<0>` for Internal. To use the External Schedule option, you must have a GPC Plus controller installed and operating on your system. To use one of the (5) External Schedules available on the GPC Plus controller, enter the number of the GPC Plus Schedule (1 through 5) you wish to use.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC Schedule</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
Setpoint Screen #31 - Push-Button Override Duration

If the VCM-X or RNE has a Space Temperature Sensor installed and it has the Override Button option, the HVAC unit will initiate Occupied Mode any time the Override Button is pressed and held for less than 3 seconds. The Push-Button Override Duration Setpoint allows you to adjust the amount of time the Override will remain in effect when the Override Button is pressed. To cancel the Override before the Override Duration time period expires, press the Override Button for 5 to 10 seconds.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push-Button Override Duration</td>
<td>0.0 Hr</td>
<td>2.0 Hr</td>
<td>8.0 Hr</td>
</tr>
</tbody>
</table>

Setpoint Screen #32 - HVAC Mode Sensor Slide Offset

If the VCM-X or RNE has a Space Temperature Sensor with the Slide Adjust option installed, the HVAC Mode Enable Heating and Cooling Setpoints can be offset by the HVAC Mode Sensor Slide Offset Setpoint value. When the Slide Adjust bar is in the middle, no offset will occur. If the Slide Adjust bar is moved all the way to the top of the Sensor, the Heating and Cooling Setpoints will be raised by the Setpoint value you have entered. If the Slide Adjust bar is moved all the way down to the bottom of the Sensor, the Heating and Cooling Setpoints will be lowered by the Setpoint value you have entered.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC Mode Sensor Slide Offset</td>
<td>0ºF</td>
<td>0ºF</td>
<td>10ºF</td>
</tr>
</tbody>
</table>

Setpoint Screen #33 - Heat Pump Auxiliary Heating Delay

If the VCM-X or RNE is configured to operate as a Heat Pump, the Heat Pump Auxiliary Heating Delay Setpoint can be configured to provide a time delay period before Auxiliary Heating Stages can be activated once activation of the Compressor Heating Stages have been initiated.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pump Auxiliary Heating</td>
<td>0 Min</td>
<td>3 Min</td>
<td>30 Min</td>
</tr>
</tbody>
</table>

Setpoint Screen #34 - Heat Pump Defrost Setpoints

The Defrost Temp Setpoint is the Coil Suction Temperature at which the unit will go into Defrost Mode during Heat Pump Heating operation. This unit will operate in the Defrost Mode for 10 minutes or until the Head Pressure reaches 450 PSI. The Defrost Timer determines the length of time Defrost Modes. The length of the Defrost Timer can be automatically be adjusted by the Adaptive Defrost Adjustment described in Setpoint Screen # 35. This Defrost Mode is only available if using the VCM-X Modular Controller or RNE Controller and a Head Pressure Module. A Suction Pressure Transducer is also required. This screen only applies if using the VCM-X Modular Controller or RNE Controller with a Suction Pressure Sensor, a Head Pressure Module, and Head Pressure Transducer(s). This screen does not apply if using the VCM-X WSHP Controller and a WSHP Protection Module.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pump Defrost Temp</td>
<td>0ºF</td>
<td>30ºF</td>
<td>50ºF</td>
</tr>
<tr>
<td>Heat Pump Defrost Timer</td>
<td>10 Min</td>
<td>30 Min</td>
<td>90 Min</td>
</tr>
</tbody>
</table>

Setpoint Screen #35 - Adaptive Defrost Adj. Setpoint

Once initiated, the Defrost Mode is active until the Head Pressure reaches 450 PSIG or until a 10 minute timer has expired. Enter a value greater than zero to enable the Adaptive Defrost Adjustment of the Heat Pump Defrost Timer (Screen #34). This adjustment value will be subtracted from the Heat Pump Defrost Timer if the Defrost Mode lasts the entire 10 minutes. A proportion of this adjustment value will be added to the Heat Pump Defrost Timer if the Defrost Mode only lasts between 8 minutes and 0 minutes. This screen only applies if using the VCM-X Modular Controller or RNE Controller with a Suction Pressure Sensor, a Head Pressure Module, and Head Pressure Transducer(s). This screen does not apply if using the VCM-X WSHP Controller and a WSHP Protection Module.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Defrost Adj. Setpoint</td>
<td>0 Min</td>
<td>0 Min</td>
<td>30 Min</td>
</tr>
</tbody>
</table>
Setpoint Screen #36 - Heat Wheel Defrost

VCM-X / RNE Spts
Heat Wheel Defrost
Setpoint: 30°F

The unit will go into Heat Wheel Defrost Mode when the Outdoor Air is below this setpoint.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Wheel Defrost</td>
<td>0°F</td>
<td>30°F</td>
<td>50°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #37 - Internal Schedule Optimal Start Soak Multiplier

VCM-X / RNE Spts
Internal Schedule Optimal Start Soak Multiplier: 0.0

The Internal Schedule Optimal Start Soak Multiplier Setpoint is a multiplier that if set to a number greater than 0 will be used as a multiplier for calculating the Optimal Start Time for the HVAC unit. This multiplier is only applied if the unit has been off for more than 24 hours. See the VCM-X Controller Technical Guide, VCM-X Modular E-BUS Controller Technical Guide, or RNE Controller Technical Guide for more detailed information regarding the Optimal Start. This multiplier is only applied if you are using the VCM-X / RNE Internal Schedule.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Schedule Optimal Start Soak Multiplier</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Setpoint Screen #38 - Trend Log Interval

VCM-X / RNE Spts
Trend Log Interval: 15 MIN

An internal Trend Log is constantly updated at a rate equal to this value.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trend Log Interval</td>
<td>1 Min</td>
<td>15 Min</td>
<td>60 Min</td>
</tr>
</tbody>
</table>

Setpoint Screen #39 - Sensor Calibration for SPC & SAT

VCM-X / RNE Spts
Sensor Calibration
SPC: XX.X° 0.00°
SAT: XX.X° 0.00°

If the Space or Supply Air Temperature Sensors are reading incorrectly, you can use this option to enter an offset temperature to adjust the Sensor’s Temperature. Enter a positive Sensor Calibration value to raise the Space Temperature and/or Supply Air Temperature Sensor reading and a negative value to lower the Sensor reading.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Calibration SPC</td>
<td>-100.0°F</td>
<td>0.0°F</td>
<td>+100.0°F</td>
</tr>
<tr>
<td>Sensor Calibration SAT</td>
<td>-100.0°F</td>
<td>0.0°F</td>
<td>+100.0°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #40 - Sensor Calibration for RAT & OAT

VCM-X / RNE Spts
Sensor Calibration
RAT: XX.X° 0.00°
OAT: XX.X° 0.00°

If the Return Air or Outdoor Air Temperature Sensors are reading incorrectly, you can use this option to enter an offset temperature to adjust the Sensor’s Temperature. Enter a positive Sensor Calibration value to raise the Return Air Temperature and/or Outdoor Air Temperature Sensor reading and a negative value to lower the Sensor reading.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Calibration RAT</td>
<td>-100.0°F</td>
<td>0.0°F</td>
<td>+100.0°F</td>
</tr>
<tr>
<td>Sensor Calibration OAT</td>
<td>-100.0°F</td>
<td>0.0°F</td>
<td>+100.0°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #41 - Sensor Calibration for COIL

VCM-X / RNE Spts
Sensor Calibration
COIL: XX.X° 0.00°

If the Coil Temperature reading is too high, enter a negative calibration offset to decrease the reading. If it is too low, enter a positive value to increase the reading.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Calibration COIL</td>
<td>-30.0°F</td>
<td>0.0°F</td>
<td>+30.0°F</td>
</tr>
</tbody>
</table>
VCM-X / RNE Status Screen Index

<table>
<thead>
<tr>
<th>Status Screen #1</th>
<th>HVAC Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Screen #2</td>
<td>Cooling/Heating/Economizer Status</td>
</tr>
<tr>
<td>Status Screen #3</td>
<td>Mode Enable Temperature and Cooling and Heating Setpoints</td>
</tr>
<tr>
<td>Status Screen #4</td>
<td>Current SAT Temperature and Setpoint</td>
</tr>
<tr>
<td>Status Screen #5</td>
<td>Space Temperature, Return Air Temperature, and Slide Adjust</td>
</tr>
<tr>
<td>Status Screen #6</td>
<td>VCM-X Leaving Water Temperature A OR RNE Leaving Water Temperature 1</td>
</tr>
<tr>
<td>Status Screen #7</td>
<td>VCM-X Leaving Water Temperature B OR RNE Leaving Water Temperature 2</td>
</tr>
<tr>
<td>Status Screen #8</td>
<td>Coil Temperature or Lowest Coil and Coil Temperature Setpoint</td>
</tr>
<tr>
<td>Status Screen #9</td>
<td>Current Outdoor Air Temperature and Current Outdoor Air Relative Humidity</td>
</tr>
<tr>
<td>Status Screen #10</td>
<td>Current Calculated Outdoor Air Dewpoint and Current Dewpoint Temperature</td>
</tr>
<tr>
<td>Status Screen #11</td>
<td>Current Indoor RH Percentage and Current Indoor RH Setpoint Percentage</td>
</tr>
<tr>
<td>Status Screen #12</td>
<td>Current Static Pressure and Output Percentage</td>
</tr>
<tr>
<td>Status Screen #13</td>
<td>Economizer Percentage, Outdoor Air Wetbulb/Drybulb, and Current CO₂ Level</td>
</tr>
<tr>
<td>Status Screen #14</td>
<td>Outdoor Air CFM & Outdoor Air Setpoint</td>
</tr>
<tr>
<td>Status Screen #15</td>
<td>Supply Air CFM & Return Air CFM</td>
</tr>
<tr>
<td>Status Screen #16</td>
<td>Current Building Pressure & Output Percentage</td>
</tr>
<tr>
<td>Status Screen #17</td>
<td>MODGAS Output Percentage & MHGRV Output Percentage</td>
</tr>
<tr>
<td>Status Screen #18</td>
<td>Current Modulating Heating & Cooling Output Signal Percentage</td>
</tr>
<tr>
<td>Status Screen #19</td>
<td>VCM-X Coil Temperatures for Full Digital, Water Source Heat Pump or Dual Digital OR RNE Coil Temperatures for Full Digital or Water Source Heat Pump</td>
</tr>
<tr>
<td>Status Screen #20</td>
<td>VCM-X Coil Temperatures for Full Digital, Water Source Heat Pump or Dual Digital OR RNE Coil Temperatures for Full Digital or Water Source Heat Pump</td>
</tr>
<tr>
<td>Status Screen #21</td>
<td>VCM-X Full Digital Module Signal, Water Source Heat Pump Module Signal or Dual Digital Module Signal OR RNE Full Digital Module Signal or Water Source Heat Pump Module Signal</td>
</tr>
<tr>
<td>Status Screen #22</td>
<td>Current Head Pressure Cooling or Reheat Setpoint</td>
</tr>
<tr>
<td>Status Screen #23</td>
<td>Head Pressure and Condenser Fan #1 Speed</td>
</tr>
<tr>
<td>Status Screen #24</td>
<td>Head Pressure and Condenser Fan #2 Speed</td>
</tr>
<tr>
<td>Status Screen #25</td>
<td>Return Air Bypass Damper Signal & Bypass Damper Signal</td>
</tr>
<tr>
<td>Status Screens #26-32</td>
<td>Supply Fan and Other Relays</td>
</tr>
<tr>
<td>Status Screens #33</td>
<td>Alarm Conditions</td>
</tr>
</tbody>
</table>
Status
The VCM-X / RNE Controller Status Screens are accessed by pressing the <STATUS> button on either the System Manager or the Modular Service Tool. Following are the available status screens and a description of their functions:

Status Screen 1 - Mode

```plaintext
<table>
<thead>
<tr>
<th>VCM-X / RNE v1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupied Mode</td>
</tr>
<tr>
<td>Vent Mode</td>
</tr>
<tr>
<td>02/15/10 05:00 PM</td>
</tr>
</tbody>
</table>
```

- **Line 2** Displays one of the following:
 - Unoccupied Mode
 - Occupied Mode
 - Holiday Mode
 - Forced Schedule Mode
 - SUPPLY AIR CUTOFF!

- **Line 3** If you selected Supply Air as the controlling sensor, this line will display:
 - Supply Air Control
 - If you select Space Temp or Return Air Control, the display will show one of the following:
 - Off Mode
 - Vent Mode
 - Cool Mode
 - Heat Mode

- **Line 4** Displays one of the following:
 - MM/DD/YY HH:MM XX (XX = AM or PM)
 - Fan Starting Delay and then time will display xx Left in WarmUp (Number of Minutes Left)

Status Screen 2 - Cooling, Heating, Economizer

```plaintext
<table>
<thead>
<tr>
<th>VCM-X / RNE v1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Enabled</td>
</tr>
<tr>
<td>Heating Enabled</td>
</tr>
<tr>
<td>Economizer Disabled</td>
</tr>
</tbody>
</table>
```

- **Line 2** Displays one of the following:
 - Cooling Enabled
 - Cooling Disabled

- **Line 3** Displays one of the following:
 - Heating Enabled
 - Heating Disabled

- **Line 4** Displays one of the following:
 - Economizer Enabled
 - Economizer Disabled

Status Screen 3 - Mode Enable Temperature & Mode Cooling and Heating Setpoints

```plaintext
<table>
<thead>
<tr>
<th>VCM-X / RNE v1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Tmp.: XX.X°F</td>
</tr>
<tr>
<td>Cooling Spt: XX.X°F</td>
</tr>
<tr>
<td>Heating Spt: XX.X°F</td>
</tr>
</tbody>
</table>
```

- **Line 2** Mode Enable Temperature
 Can be the Supply Air Temperature, Return Air Temperature, Outdoor Air Temperature, or Space Temperature, depending on which one has been configured as the Mode Enable Sensor.

- **Line 3** Cooling Mode Setpoint
 Based on the current Occupied/Unoccupied Mode of operation.

- **Line 4** Heating Mode Setpoint
 Based on the current Occupied/Unoccupied Mode of operation.

Status Screen 4 - Supply Air Temperature & Setpoint

```plaintext
<table>
<thead>
<tr>
<th>VCM-X / RNE v1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Air: XX.X°F</td>
</tr>
<tr>
<td>Supply Spt: XX.X°F</td>
</tr>
</tbody>
</table>
```

- **Line 2** Current Supply Air Temperature
 The Supply Air Temperature is always required. If a Supply Air Temperature Sensor is not installed, the VCM-X / RNE Controller will not operate correctly and will display 0°F.

- **Line 3** Current Active Supply Air Setpoint
 This is the Supply Air Setpoint for the mode that the unit is currently operating in. If the Supply Air Reset is configured, this is the calculated setpoint based on the current Reset Source conditions.
Status Screen 5 - Space Temp, Return Air & Slide Adjust

VCM-X / RNE v1.00
Space Tmp.: XX.X°F
Return Air.: XX.X°F
Slide Adj.: XX.X°F

Line 2 Space Temperature
If you are using a Space Temperature Sensor, this line will display the current Space Temperature during the Occupied or Unoccupied Mode.

Line 3 Return Air Temperature
This sensor is optional. If a Return Air Temperature Sensor is not used, it will display 0°F.

Line 4 Slide Adjust
This is the current value of the Space Temperature offset based on the position of the slide adjust switch on the Space Sensor.

Status Screen 7 / VCM-X - Leaving Water Temperature B

VCM-X v1.00
Leaving Water
Temp B: 0.0°F

Line 3 Leaving Water Temperature A
This line will display the Leaving Water Temperature of the first Leaving Water Temperature Sensor on a Water Source Heat Pump Module. If using (2) Water Source Heat Pump Modules, this will be the first sensor on the Module with address 1.

Line 4 Leaving Water Temperature B
This line will display the Leaving Water Temperature of the second Leaving Water Temperature Sensor on a Water Source Heat Pump Module. If using (2) Water Source Heat Pump Modules, this will be the second sensor on the Module with address 1.

Status Screen 7 / RNE - Leaving Water Temperature 2

RNE v1.00
Leaving Water 2
Temp A: 0.0°F
Temp B: 0.0°F

Line 2-3 Leaving Water Temperature B
If using the VCM-X Controller and you have a Water Source Heat Pump Unit installed with two leaving water temperature sensors, this screen will display the Leaving Water Temperature of System B.

Status Screen 6 / RNE - Leaving Water Temperature 1

RNE v1.00
Leaving Water 1
Temp A: 0.0°F
Temp B: 0.0°F

Line 2 Leaving Water Temperature 1
If using the RNE Controller and you have a Water Source Heat Pump Module installed or if there are two Water Source Heat Pump Modules installed and this is the first Module, then this screen will display Water Temperatures of this Module. If not, this screen will display 0°F.

Line 3 Leaving Water Temperature A
This line will display the Leaving Water Temperature of the first Leaving Water Temperature Sensor on a Water Source Heat Pump Module. If using (2) Water Source Heat Pump Modules, this will be the first sensor on the Module with address 2.

Line 4 Leaving Water Temperature B
This line will display the Leaving Water Temperature of the second Leaving Water Temperature Sensor on a Water Source Heat Pump Module. If using (2) Water Source Heat Pump Modules, this will be the second sensor on the Module with address 2.
Status Screen 8 - Coi1 Temp & Setpoint

VCM-X / RNE v1.00
Coil Tmp...: XX.X°F
Coil Tmp Spt: XX.X°F

Line 2 Coil Temperature or Lowest Coil
If a Suction Pressure Transducer has been installed and configured on the unit, the calculated Evaporator Coil Temperature will appear on this line. If not, this line will display 0°F.

If this unit has multiple digital scroll compressors and has a Full Digital Module or Dual Digital Module installed, this line will display Lowest Coil and will display the lowest of the multiple suction temperatures. The coil temperatures of all the coils will be displayed on Status Screens 19 & 20.

Line 3 Coil Temperature Setpoint
During dehumidification, the Coil Suction Temperature Setpoint is automatically reset based on the current space humidity conditions. This is the current calculated Coil Temperature Setpoint based on that reset.

Status Screen 9 - Outdoor Air Temperature & Outdoor Air Relative Humidity

VCM-X / RNE v1.00
Outdoor Tmp: XX.X°F
Outdoor RH.: XX.X%

Line 2 Current Outdoor Air Temperature
If an Outdoor Air Temperature Sensor has been installed and configured on the unit or if an Outdoor Air Broadcast has been configured on another VCM-X or RNE Controller on the system, the Outdoor Air Temperature will appear on this line. If not, this line will display a temperature that is halfway between the Cooling and Heating Lockout Setpoints.

Line 3 Current Outdoor Air Relative Humidity
If an Outdoor Humidity Sensor has been installed and configured on the VCM-X or RNE, the Outdoor Air Relative Humidity Percentage will appear on this line. If not, this line will display 0%.

Status Screen 10 - OA Dewpoint & Dewpoint Temp

VCM-X / RNE v1.00
OA Dewpoint.: XX.X°F
Dewpoint Spt: XX.X°F

Line 2 Current Calculated Outdoor Air Dewpoint Temperature
If both an Outdoor Humidity Sensor and an Outdoor Air Temperature Sensor have been installed and configured on the unit, the calculated Outdoor Air Dewpoint Temperature will appear on this line. If not, this screen displays 0°F.

Line 3 Current Outdoor Air Dewpoint Setpoint
The user adjustable Outdoor Air Dewpoint Temperature Setpoint will appear on this line.

Status Screen 11 - Indoor RH & Indoor RH Setpoint

VCM-X / RNE v1.00
Indoor RH....: XXX%
Indoor RH Spt: XXX%

Line 2 Current Indoor Relative Humidity Percentage
If an Indoor Humidity Sensor has been installed and configured on the unit, the current Indoor Air Relative Humidity Percentage will appear on this line. The installed Indoor Humidity Sensor can be either a Wall Mounted type or a Return Air Mounted type. If an Indoor Humidity Sensor is not installed, this line will display 0%.

Line 3 Current Indoor Relative Humidity Setpoint Percentage
This is the adjustable Indoor Air Relative Humidity Setpoint Percentage that has been set by the user.
VCM-X / RNE Status Screens

Status Screen 12 - Static Pressure & Output %

- **VCM-X / RNE v1.00**
- **Static Pr...: X.XX”**
- **Press Output: XXX%**

 [Optional Output]

Line 2 Current Static Pressure
Requires the installation and wiring of a Duct Static Pressure Sensor. If you do not have a Duct Static Pressure Sensor correctly installed and wired to the controller, this line will display “0.0”.

Line 3 Current Static Pressure Output Signal Percentage
Indicates the output signal percentage being supplied to the VFD Controller or Bypass Damper Actuator when you have configured one of these options for your HVAC unit.

If you have not configured Duct Static Pressure Control, this line will display [No Press Out Config].

Line 4 Indicates That This is An Optional Output
This output may or may not have live data to display.

Status Screen 13 - Economizer %, OA Wetbulb, and CO₂ Level

- **VCM-X / RNE v1.00**
- **Economizer.: XXX %**
- **OA Wetbulb.: XX.X°F**
- **CO₂ Level.: XXXXPPM**

Line 2 Current Economizer Open Percentage
The Economizer is optional. This shows the Outdoor Air Damper open percentage. If Economizer Control is not configured, it will display 0%.

Line 3 Current Wetbulb/Drybulb Temperature
The Outdoor Air Wetbulb Temperature is optional. To display the Outdoor Air Wetbulb Temperature, you must install an Outdoor Air Temperature Sensor (or an Outdoor Air Temperature Broadcast) and an Outdoor Air Relative Humidity Sensor. If these conditions exist, this line will display the calculated Outdoor Air Wetbulb Temperature. If these conditions do not exist, it will display 0°F.

Line 4 Current CO₂ Level
The CO₂ Level is optional. You must install and configure a CO₂ Sensor to display the CO₂ Level. If a CO₂ Sensor is not installed and configured, this line will display 0 PPM.

Status Screen 14 - Outdoor Air CFM & Setpoint

- **VCM-X / RNE v1.00**
- **OA CFM: 0.00 K**
- **OA Sp.: 0.00 K**

 [Optional Input]

Line 2 Outdoor Air CFM
If an outdoor air airflow monitoring station is being used, this is the current CFM reading of that device. K = 1000

Line 3 Outdoor Air Setpoint
If control of the OA Damper based on CFM is configured, this is the controlling setpoint. K = 1000

Line 4 Indicates That This is An Optional Input
This input may or may not have live data to display.

Status Screen 15 - Supply Air & Return Air CFM

- **VCM-X / RNE v1.00**
- **SA CFM: 0.00 K**
- **RA CFM: 0.00 K**

 [Optional Inputs]

Line 2 Supply Air CFM
If a supply air airflow monitoring station is being used, this is the current CFM reading of that device. K = 1000

Line 3 Return Air CFM
If a return air airflow monitoring station is being used, this is the current CFM reading of that device. K = 1000

Line 4 Indicates That These are Optional Inputs
These inputs may or may not have live data to display.
Status Screen 16 - Building Pressure & Output %

VCM-X / RNE v1.00
Building Pr.: X.XX”
Press Output: XXX%
[Optional Outputs]

Line 2 Current Building Pressure
Indicates the current Building Pressure. This display requires the installation of a Building Pressure Sensor.
If you don’t have a Building Pressure Sensor correctly installed and wired to the controller, this line will display “0.0”.

Line 3 Current Building Pressure Output Signal Percentage
Indicates the output signal percentage being supplied to the Exhaust Fan VFD controller or Exhaust Damper Actuator when you have configured one of these options for your HVAC unit.
If you have not configured Building Pressure Control, this line will display [No Press Out Config].

Line 4 Indicates That These Are Optional Outputs
This output may or may not have live data to display.

Status Screen 17 - MODGAS Output % & MHGRV Output %

VCM-X / RNE v1.00
MODGAS Pos.: XXX%
MHGRV Pos.: XXX%
[Optional Equipment]

Line 2 Current MODGAS Heating Output Signal
Indicates the percentage of the output signal being supplied to the MODGAS Controller when you have one connected to your HVAC unit. If you do not have a MODGAS controller connected to your VCM-X or RNE Controller, this screen will indicate [MODGAS NOT CONNECTED].

Line 3 Current MHGRV Reheat Valve Output Signal Percentage
Indicates the percentage of the output signal being supplied to the MHGRV controller when you have one connected to your VCM-X or RNE Controller. If you do not have an MHGRV controller connected to your VCM-X controller, this screen will indicate [MHGRV NOT CONNECTED].

Line 4 Optional Equipment
Indicates that these outputs are optional and therefore may or may not have live data to display.

Status Screen 18 - Mod Heating & Cooling %

VCM-X / RNE v1.00
Mod Heating: XXX%
Mod Cooling: XXX%
[Optional Outputs]

Line 2 Current Modulating Heating Output Signal Percentage
Indicates the percentage of the output signal being supplied to a Modulating Heating device when you have configured this option for your HVAC unit. If Reverse Acting operation is configured, this percentage will be Reversed. See the following examples for clarification:

Standard Operation:
0-10 VDC 0% = 0 VDC 100% = 10 VDC
2-10 VDC 0% = 2 VDC 100% = 10 VDC

Reverse Acting Operation:
0-10 VDC 0% = 10 VDC 100% = 0 VDC
2-10 VDC 0% = 10 VDC 100% = 2 VDC

If you do not have a Modulating Heating device configured, this screen will indicate [No Mod Heat Config].

Line 3 Current Modulating Cooling Output Signal Percentage
Indicates the percentage of the output signal being supplied to a Modulating Cooling device when you have configured this option for your HVAC unit. If reverse acting is configured, this percentage will be reversed. See the following examples for clarification:

Standard Operation:
0-10 VDC 0% = 0 VDC 100% = 10 VDC
2-10 VDC 0% = 2 VDC 100% = 10 VDC
1.5-5.0 VDC 0% = 1.5 VDC 100% = 5.0 VDC

Reverse Acting Operation:
0-10 VDC 0% = 10 VDC 100% = 0 VDC
2-10 VDC 0% = 10 VDC 100% = 2 VDC

If you do not have a Modulating Cooling device connected to your HVAC unit and configured, this screen will indicate [No Mod Cool Config].
If this unit has a Dual Digital Module, Full Digital Module, or Water Source Heat Pump with multiple Digital Scroll Compressors, this line will be blank.

Line 4 Indicates That These Are Optional Outputs
These outputs may or may not have live data to display.
Status Screen 19 / VCM-X - Full Digital Module
OR Dual Digital Module

VCMX-M/HP Cnfg ID 102
Full Digital Temp
Coil A1: X.X° F
Coil A2: X.X° F

Line 2 Full Digital Temperature
If using a VCM-X Modular Controller (OE332-23-VCMX-MOD-A) with a Full Digital Module (OE370-23-FD-A) or if you are using the VCM-X WSHP Controller (VCMX-23-VCMX-WSHP-A) with multiple Digital Scroll Compressors, this screen will appear.

Line 3 Coil A1 Temperature
This is the current Coil Suction Temperature of Compressor A1.

Line 4 Coil A2 Temperature
This is the current Coil Suction Temperature of Compressor A2.

Status Screen 19 / RNE - Full Digital Module

RNE Cnfg ID 102
Full Digital Temp
Coil A1: X.X° F
Coil A2: X.X° F

Line 2 Full Digital Temperature
If using a Full Digital Module (OE370-23-FD-A) or Water Source Heat Pump Module (OE334-23-WPM-A), this screen will appear.

Line 3 Coil A1 Temperature
This is the current Coil Suction Temperature of Compressor A1.

Line 4 Coil A2 Temperature
This is the current Coil Suction Temperature of Compressor A2.

Status Screen 20 / VCM-X - Full Digital Module

VCMX-M/HP Cnfg ID 102
Dual Digital Temp
Circuit A: X.X° F
Circuit B: X.X° F

Line 2 Dual Digital Temperature
If using a VCM-X Modular Controller (OE332-23-VCMX-MOD-C) with a Dual Digital Module (OE370-23-DD) or if you are using the VCM-X WSHP Controller (VCMX-23-VCMX-WSHP-C) with two Digital Scroll Compressors, this screen will appear.

Line 3 Circuit A Temperature
This is the current Coil Suction Temperature of Circuit A.

Line 4 Circuit B Temperature
This is the current Coil Suction Temperature of Circuit B.

VCM-X / RNE Status Screens
VCM-X / RNE Status Screens

Status Screen 20 / RNE - Full Digital Module

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RNE Cnfg ID 102</td>
</tr>
<tr>
<td>2</td>
<td>Full Digital Temperature</td>
</tr>
<tr>
<td>3</td>
<td>Coil B1 Temperature</td>
</tr>
<tr>
<td>4</td>
<td>Coil B2 Temperature</td>
</tr>
</tbody>
</table>

- **Line 2**: Full Digital Temperature
 - If using a Full Digital Module (OE370-23-FD-A) or Water Source Heat Pump Module (OE334-23-WPM-A), this screen will appear. If not using (2) Full Digital Modules, this screen will show no values.

- **Line 3**: Coil B1 Temperature
 - This is the current Coil Suction Temperature of Compressor B1.

- **Line 4**: Coil B2 Temperature
 - This is the current Coil Suction Temperature of Compressor B2.

Status Screen 21 / VCM-X - Full Digital Signal OR Dual Digital Signal

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCMX-M/HP Cnfg ID 102</td>
</tr>
<tr>
<td>2</td>
<td>Full Digital</td>
</tr>
<tr>
<td>3</td>
<td>Stage 1 Signal Percentage</td>
</tr>
<tr>
<td>4</td>
<td>Stage 2 Signal Percentage</td>
</tr>
</tbody>
</table>

- **Line 2**: Full Digital Signal
 - If using a VCM-X Modular Controller (OE332-23-VCMX-MOD-A) with a Full Digital Module (OE370-23-FD-A) or if you are using the VCM-X WSHP Controller (VCMX-23-VCMX-WSHP-A) with at least two Digital Scroll Compressors, this screen will appear.

- **Line 3**: Stage 1 Signal Percentage
 - This is the modulating signal percentage for Compressor 1 (A1) if there are two Digital Scroll Compressors, or for the first two Compressors if there are four Digital Scroll Compressors.

- **Line 4**: Stage 2 Signal Percentage
 - This is the modulating signal percentage for Compressor 2 (A2) if there are two Digital Scroll Compressors, or for the last two Compressors if there are four Digital Scroll Compressors.

Status Screen 21 / RNE - Full Digital Signal

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCMX-M/HP Cnfg ID 102</td>
</tr>
<tr>
<td>2</td>
<td>Dual Digital</td>
</tr>
<tr>
<td>3</td>
<td>Comp A Sig: 0%</td>
</tr>
<tr>
<td>4</td>
<td>Comp B Sig: 0%</td>
</tr>
</tbody>
</table>

- **Line 2**: Dual Digital Signal
 - If using a VCM-X Modular Controller (OE332-23-VCMX-MOD-C) with a Dual Digital Module (OE370-23-DD) or if you are using the VCM-X WSHP Controller (VCMX-23-VCMX-WSHP-C) with two Digital Scroll Compressors, this screen will appear.

- **Line 3**: Compressor A Signal
 - This is the modulating signal percentage for Circuit A Compressor 1 (A1).

- **Line 4**: Compressor B Signal
 - This is the modulating signal percentage for Circuit B Compressor 1 (B1).
VCM-X / RNE STATUS

VCM-X / RNE Status Screens

Status Screen 22 - Head Pressure Setpoint

If you are using the VCM-X Modular, VCM-X WSHP, or RNE Controller and have a One Condenser or Two Condenser Head Pressure Module attached to the unit, the Head Pressure Cooling or Reheat Setpoint will display, depending on what mode the Module is in. This status value will show 0 if not in the Cooling or Dehumidification Mode.

Status Screen 23 - Head Pressure Condenser Fan #1

If you are using the VCM-X Modular, VCM-X WSHP, or RNE Controller and have a One Condenser or Two Condenser Head Pressure Module attached to the unit, this line displays Condenser Fan #1.

Status Screen 24 - Head Pressure Condenser Fan #2

If you are using the VCM-X Modular, VCM-X WSHP, or RNE Controller and have a Two Condenser Head Pressure Module attached to the unit, this line displays Condenser Fan #2.

Status Screen 25 - Return Air Damper Signal & Bypass Damper Signal

If you haven’t configured a Return Air Bypass Damper, [No Return Dmp Confg] will be displayed instead.

Optional Outputs

This output may or may not have live data to display.
Status Screens 26-32 - Supply Fan Relay

<table>
<thead>
<tr>
<th>Line 2</th>
<th>Current Supply Fan Relay Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The letters FRC will appear before the colon if this Relay is in a Force Mode. On screens 24 to 30, this line will indicate the relays use and the ON/OFF condition for that relay. Possible options are as follows:</td>
</tr>
<tr>
<td></td>
<td>Not Used</td>
</tr>
<tr>
<td></td>
<td>Heat Stage</td>
</tr>
<tr>
<td></td>
<td>Cool Stage</td>
</tr>
<tr>
<td></td>
<td>Warmup Mode</td>
</tr>
<tr>
<td></td>
<td>Rev Valve</td>
</tr>
<tr>
<td></td>
<td>Gas Re-Heat (HGR Relay)</td>
</tr>
<tr>
<td></td>
<td>Exhaust Fan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line 3</th>
<th>Current relay status and description of what it is configured for</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The letters FRC will indicate the relay is forced to its current condition.</td>
</tr>
</tbody>
</table>

Status Screen 33 - Alarm Conditions

<table>
<thead>
<tr>
<th>Line 2</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 3</td>
<td>Alarm Conditions</td>
</tr>
<tr>
<td></td>
<td>Can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>NO SUPPLY AIR TEMP</td>
</tr>
<tr>
<td></td>
<td>NO OUTDOOR AIR TEMP</td>
</tr>
<tr>
<td></td>
<td>SPACE SENSOR FAILURE</td>
</tr>
<tr>
<td></td>
<td>MECH COOLING FAILURE</td>
</tr>
<tr>
<td></td>
<td>MECH HEATING FAILURE</td>
</tr>
<tr>
<td></td>
<td>FAN PROVING ALARM</td>
</tr>
<tr>
<td></td>
<td>DIRTY FILTER ALARM</td>
</tr>
<tr>
<td></td>
<td>EMERGENCY SHUTDOWN</td>
</tr>
<tr>
<td></td>
<td>LO SUPPLY AIR ALARM</td>
</tr>
<tr>
<td></td>
<td>HI SUPPLY AIR ALARM</td>
</tr>
<tr>
<td></td>
<td>LOW CONTROL TEMP</td>
</tr>
<tr>
<td></td>
<td>HIGH CONTROL TEMP</td>
</tr>
<tr>
<td></td>
<td>MODULE ALARM</td>
</tr>
</tbody>
</table>

If you press <ENTER>, the screen will scroll through all active alarms.

For Alarm Definitions, see the VCM-X Controller Technical Guide, the VCM-X Modular E-BUS Controller Technical Guide, or the RNE Controller Technical Guide.
VAV/ZONE CONTROLLER PROGRAMMING

VAV/Zone Configuration Screens

VAV Zone Configuration

In order to correctly set up the VAV/Zone Controller, you must first configure several parameters in regard to the type of system and operating parameters for the VAV/Zone Controller you have installed. Most of these values and operating parameters are only set once at the initial system setup and are never changed.

System Manager Instructions

From any Menu Screen, press the <SETPOINTS> button. The Unit Selection Screen will appear requesting that you enter the unit ID number. Enter the correct unit ID number of the VAV/Zone Controller you want to configure and press <ENTER>. You will see the screen shown below.

1) Change Setpoint
2) Configure Unit
3) Damper Force
ESC) Exit Menu

Press <2> on the keypad to enter the first Unit Configuration Screen.

Modular Service Tool Instructions

From any Menu Screen, press the <CONFIGURATION> button. The Unit Selection Screen will appear requesting that you enter the unit ID number. Enter the correct unit ID number of the VAV/Zone controller you want to configure, and press <ENTER>. You will then see Unit Configuration Screen #1.

Configuration Screen #1 - Box Configuration

XX Box Cnfg IDxxxx
Box Configuration
COOLING ONLY BOX
[Enter Type 0 - 3]

This Box Control Code will operate in one of four possible modes. The box designation will display on the top line of all screens.

0 = COOLING ONLY BOX (will display as CO Box)
1 = H/C CHANGEOVER BOX (will display as HC Box)
2 = SERIES FAN BOX (will display as SF Box)
3 = PARALLEL FAN BOX (will display as PF Box)

Configuration Screen #2 - Damper Operation

XX Box Cnfg IDxxxx
Damper Operating Mode: DIRECT ACTING
[0=Direct 1=Reverse]

Enter <0> for Direct Acting or <1> for Reverse Acting. If the damper opens in a clockwise direction, it is DIRECT ACTING. If the damper opens in a counter-clockwise direction, it is REVERSE ACTING.

CAUTION: If you change this setting, you MUST cycle power to the controller to allow it to re-calibrate the damper feedback positions for its new direction of control!

Configuration Screen #3 - Voting Zone

XX Box Cnfg IDxxxx
Is This Box a Voting Zone..: YES
[0=NO 1=YES]

If this is a Zoned System, select this option so that the box can be included as a voting zone.

Configuration Screen #4 - Pressure Independent Airflow Constant

XX Box Cnfg IDxxxx
Pr Independent Boxes
Airflow @ 1” WG Constant..: 1200 CFM

If this is a Pressure Independent Box, you must enter this airflow constant so that the CFM readings can be correctly calculated. This airflow constant is provided by the box manufacturer and depends on the diameter of the duct.
If you require the VAV/Zone Controller to control reheat for the zone it is installed in, you must include a relay expansion board and then configure the number of heating stages (1, 2, or 3) that it will be controlling whenever there is a heating demand in the space. Enter <0> if you don’t require this option.

Select this option to change the range of the proportional heat output from 0-10 VDC to 2-10 VDC.

Set this option to 1=YES to allow the Heating Relay’s Controlling Box Heat to remain on even when the HVAC unit is in Supply Air Heating Mode. This is used as a method to provide supplemental heat if for some reason the HVAC heat cannot satisfy the heating demand.

This setting only applies to the unoccupied mode of operation. Select 1=YES to activate the heating stages only when the main fan is operating on non-fan terminal units. For series fan terminal units, if this setting is set to 1=YES, the series box fan will only run when the main HVAC unit fan is running or when a space heating demand is made. For series fan terminal units, if this setting is set to 0=NO, the series box fan will only run when a space heating demand is made. This setting has no effect on the parallel flow fan terminal unit.

During Unoccupied Mode, all zones with a corresponding Group ID # will resume Occupied operation whenever any of the zones in that group has its push-button depressed to initiate an override condition. This allows you to group zones in various areas of the building. For example, individual tenants with several offices could restore occupied mode for just their zones and not affect other zones in the building.

The default group ID number for all VAV/Zone Controllers is set at the factory to 1. If you don’t want a specific zone(s) to be part of that group, you must give each one a distinct Group ID number between 2 and 16. Setting a zone’s Group ID number to 0 will disable the Space Sensor Override Button function.

If you don’t want a specific zone to be a part of any group, enter <0> for its Group ID #.

A “Dump Zone” is used when you want to control a duct heater or baseboard heater independently. A VAV/Zone Controller board with a relay expansion board is used for this purpose. No damper or actuator is used. If you need to control an auxiliary heater, select 1=YES; otherwise, be sure it is set to 0=NO.

If this system has 1 HVAC unit controlling boxes on multiple loops and the HVAC unit is on a different loop than this box, select 1=YES; otherwise, be sure it is set to 0=NO.
VAV/Zone Setpoint Screens

VAV/Zone Controller Setpoints

Setpoint Screen #1 - Occupied Setpoints

Enter the Occupied Cooling Setpoint as the maximum temperature you would like the zone to reach before modulating the damper open to bring in more cold air to cool the space. Enter the Occupied Heating Setpoint as the minimum temperature you would like the zone to reach before activating the Reheat Stages on the optional Expansion Relay board. If this is a Cooling Only box that doesn’t contain reheat, this setpoint will be ignored.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Setpoint</td>
<td>50°F</td>
<td>74°F</td>
<td>90°F</td>
</tr>
<tr>
<td>Heating Setpoint</td>
<td>50°F</td>
<td>70°F</td>
<td>90°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #2 - Unoccupied Setbacks

During unoccupied hours, the Occupied Cooling Setpoint is adjusted up by the amount entered for the Cooling SetUp. The Occupied Heating Setpoint is adjusted down by the amount entered for the Heating SetBk.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling SetUp</td>
<td>0°F</td>
<td>+10°F</td>
<td>+30°F</td>
</tr>
<tr>
<td>Heating SetBk</td>
<td>0°F</td>
<td>-10°F</td>
<td>-30°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #3 - AHU Heat Call Space Temp

This setpoint allows you to set a Space Temperature that will cause the VAV/Zone Controller to send a call for heat to the HVAC unit. This only occurs in the Unoccupied Mode.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHU Heat Call Space Temp...</td>
<td>50°F</td>
<td>70°F</td>
<td>90°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #4 - Auxiliary Heat Setpoint

This setpoint allows you to set a Space Temperature that will enable the Auxiliary Heat Relay (Relay 4) on the VAV/Zone Controller Reheat Expansion Board for heating options other than box heat, such as baseboard heat or an external duct heater. This could control a stage of electric heat or an on/off hot water valve. The Auxiliary Heat Relay will energize at .5°F below this setpoint and will de-energize at .5°F above this setpoint. The Auxiliary Heat will continue to function regardless of the HVAC Mode the unit is in and at any airflow condition.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary Heat Setpoint</td>
<td>50°F</td>
<td>70°F</td>
<td>90°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #5 - Damper Airflow Integral

The VAV/Zone Controller normally opens its damper based on a Proportional Error from Setpoint. That means if the zone temperature is 4°F from setpoint, the damper would be 100% open, or it would be modulating to provide the Maximum CFM on Pressure Independent boxes. If the error is less than 4°F, the damper may stagnate at that position and never satisfy the zone. If you add Integral into the damper calculation process, this will cause the damper or airflow calculations to continue to increase as long as the zone temperature is still above the setpoint. That means it can provide 100% or Maximum CFM before the 4°F error is achieved, bringing the zone under control faster than it normally would.

Start with a small (5 or 10) value, if you use this, and monitor the effect it has. If you enter too large a value, you can create “hunting” situations that can cause the damper actuator to prematurely wear out.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>
The VAV/Zone Controller will not allow the damper or airflow calculation to exceed the Maximum setpoint while it is allowing the damper to modulate. During Vent mode when there is no heating or cooling demand, the damper or airflow will maintain at least the Vent Min amount of airflow into the zone for ventilation.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>0% or 0 CFM</td>
<td>100% or 1000 CFM</td>
<td>100% or 30000 CFM</td>
</tr>
<tr>
<td>Vent Min</td>
<td>0% or 0 CFM</td>
<td>25% or 250 CFM</td>
<td>100% or 30000 CFM</td>
</tr>
</tbody>
</table>

During Supply Air Cooling Mode, if the space being served by this damper is satisfied and has no cooling demand, the damper will close to this Cool Min setting. This provides a minimum amount of airflow into the space for ventilation, even if the space does not require additional cooling. During Supply Air Heating Mode, if the space being served by this damper is satisfied and has no heating demand, the damper will close to this Heat Min setting. This provides a minimum amount of airflow into the space for ventilation, even if the space does not require additional heating.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool Min</td>
<td>0% or 0 CFM</td>
<td>10% or 1000 CFM</td>
<td>100% or 30000 CFM</td>
</tr>
<tr>
<td>Heat Min</td>
<td>0% or 0 CFM</td>
<td>10% or 100 CFM</td>
<td>100% or 30000 CFM</td>
</tr>
</tbody>
</table>

The Night Min is the position the damper will move to when the system is in Override Mode and this particular damper is not part of the override group. This Night Min position only affects non-fan powered boxes. The Fan On Min is the minimum damper or airflow setting used to activate the parallel fan if installed. Pressure Independent = CFM. Pressure Dependent = %.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Night Min</td>
<td>0% or 0 CFM</td>
<td>0% or 0 CFM</td>
<td>100% or 9999 CFM</td>
</tr>
<tr>
<td>Fan On Min</td>
<td>0% or 0 CFM</td>
<td>25% or 250 CFM</td>
<td>100% or 9999 CFM</td>
</tr>
</tbody>
</table>

The Reheat Min is the damper or airflow setting used during the Space Reheat Mode of operation.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reheat Min</td>
<td>0% or 0 CFM</td>
<td>0% or 0 CFM</td>
<td>100% or 30000 CFM</td>
</tr>
</tbody>
</table>

Many times while troubleshooting a system, it is useful to have the zone damper set to a specific damper position or airflow setting. This setpoint can be used to determine where the damper/airflow will remain when the VAV/Zone Controller receives a Force to Fixed Position command.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Pos</td>
<td>0% or 0 CFM</td>
<td>0% or 0 CFM</td>
<td>100% or 9999 CFM</td>
</tr>
</tbody>
</table>
If the supply air temperature is above the space temperature by this amount, the VAV/Zone Controller enters the Supply Air Heating Mode. It will remain in the Supply Air Heating Mode until the supply air drops to 2°F above the space temperature. At that point the unit enters the Supply Air Vent Mode and remains there until the supply air drops this deadband below the space temperature. At that point the VAV/Zone Controller enters the Supply Air Cooling Mode and will remain there until the supply air temperature rises to 2°F below the space temperature.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT HVAC Mode Deadband</td>
<td>0°F</td>
<td>10°F</td>
<td>20°F</td>
</tr>
</tbody>
</table>

The VAV/Zone Controller can be setup to generate an alarm anytime the box goes into the Occupied Mode and the Zone Temperature exceeds the user-defined alarm limits for a user-defined period of time. A High Temperature Alarm Setpoint is created by adding the Hi Zone Alarm offset to the current Cooling Setpoint. The Low Temperature Alarm Setpoint is created by adding the Lo Zone Alarm offset to the current Heating Setpoint. If the zone temperature exceeds either of these limits for a period defined by the Alarm Delay setpoint, the controller can generate an alarm callout if all the optional hardware components required for this to occur are installed.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hi Zone Alarm</td>
<td>+1°F</td>
<td>+30°F</td>
<td>+50°F</td>
</tr>
<tr>
<td>Lo Zone Alarm</td>
<td>-1°F</td>
<td>-30°F</td>
<td>-50°F</td>
</tr>
</tbody>
</table>

As mentioned above, if you configure the controller to generate zone temperature alarms, this is the amount of time after the box goes into the Occupied Mode that the temperature must be outside the alarm limits before an alarm is generated.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out of Limits</td>
<td>1 Min</td>
<td>30 Min</td>
<td>300 Min</td>
</tr>
</tbody>
</table>

This screen allows you to set the VAV/Zone Controller to operate on a remote schedule instead of the schedule that is contained in the VCM-X or RNE Controller. Enter <0> to operate on the AHU schedule. Enter <1-5> to use an external schedule. A GPC Plus is required for schedules 1-5.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule Control Number</td>
<td>0</td>
<td>0</td>
<td>1 to 5</td>
</tr>
</tbody>
</table>

If the Flush Mount Wall Sensor has the optional Setpoint Slide Adjust, this is the maximum amount you can adjust the heating and cooling setpoints up or down as the slide is moved from the center position to its full up or down position.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect on SP</td>
<td>0°F</td>
<td>0°F</td>
<td>6°F</td>
</tr>
</tbody>
</table>
Setpoint Screen #16 - Push-Button Override
Duration

If the Flush Mount Wall Sensor has the optional Push-Button Override, this is the amount of the VAV/Zone Controller will resume using its Occupied Setpoints during unoccupied mode. This will generate a call for the Air Handler to start its fan and provide heating or cooling, depending on how you configure the Air Handler.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>0.0 Hr</td>
<td>0.0 Hr</td>
<td>8.0 Hr</td>
</tr>
</tbody>
</table>

Setpoint Screen #17 - Maximum EMS Offset

If the Energy Management System (EMS) is activated, the heat and cool setpoints can be spread apart by this amount.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum EMS Setpoint Offset</td>
<td>-100ºF</td>
<td>0ºF</td>
<td>+100ºF</td>
</tr>
</tbody>
</table>

Setpoint Screen #18 - Sensor Calibration for Space Temp and Supply Air Temp

The Thermistor Type III sensor readings can be calibrated. Enter a Positive value to increase a reading and a Negative value to decrease a reading.

NOTE: The Supply Air Temperature calibration offset only operates on the reading when the VAV/Zone Controller has its own Supply Air Temperature sensor installed on the AUX2 input. If the supply temperature is received from a global broadcast, you will need to go to the air handler to calibrate the temperature reading.
VAV/Zone Status Screens

VAV/Zone Status

Status Screen #1 - Mode of Operation

<table>
<thead>
<tr>
<th>Line 1</th>
<th>Status</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX Box v4.01 IDXXXX</td>
<td>Occupied Mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vent Mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Belongs to Group # 1</td>
<td></td>
</tr>
<tr>
<td>Line 2</td>
<td>Unoccupied Mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Occupied Mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Override Mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Override Pending*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Damper Calibration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group Override</td>
<td></td>
</tr>
<tr>
<td>Line 3</td>
<td>OFF Mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vent Mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling Mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heating Mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensor Fail Mode**</td>
<td></td>
</tr>
<tr>
<td>Line 4</td>
<td>Belongs to Group # xx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No Group Affiliation</td>
<td></td>
</tr>
</tbody>
</table>

* Not displayed when using a Digital Room Sensor.
** Displays for either a temperature sensor failure or an airflow sensor failure.

Status Screen #2 - Zone Temperature and Cooling/Heating Setpoints

<table>
<thead>
<tr>
<th>Line 2</th>
<th>Status</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX Box v4.01 IDXXXX</td>
<td>Zone Temp.: XX.X°F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling Spt: XX.X°F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heating Spt: XX.X°F</td>
<td></td>
</tr>
</tbody>
</table>

Line 2 | Current Zone Temperature | |
Line 3 | Currently active Cooling Setpoint based on the current Occupied / Unoccupied mode of operation. | |
Line 4 | Currently active Heating Setpoint based on the current Occupied / Unoccupied mode of operation. | |

Status Screen #3 - Slide Offset & H/C Demand

<table>
<thead>
<tr>
<th>Line 2</th>
<th>Status</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX Box v4.01 IDXXXX</td>
<td>Slide Offset: XX°F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H/C Demand.: XX.X°F</td>
<td></td>
</tr>
</tbody>
</table>

Line 2 | If the optional Setpoint Slide Adjust is installed on the Flush Mount Wall Sensor, this line will display the current amount the Slide Offset is affecting the Heating and Cooling Setpoints. | |
Line 3 | Current Heating or Cooling Demand in the Zone based on the current Heating and Cooling Setpoints when compared to the current Zone Temperature. | |
Line 4 | Blank | |

Status Screen #4 - Supply Air Temperature & Box Air Temperature

<table>
<thead>
<tr>
<th>Line 2</th>
<th>Status</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX Box v4.01 IDXXXX</td>
<td>Supply Air: XX.X°F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Box Air.: XX.X°F</td>
<td></td>
</tr>
</tbody>
</table>

Line 2 | Current Supply Air Temperature received via broadcast from the DX Air Handler or from the Box Controller’s own installed Box Air Temperature Sensor connected to the AUX input of the VAV/Zone Controller board. | |
Line 3 | Current Box Air Temperature | |
Line 4 | Blank | |

If you have configured the VCM-X or RNE Controller to broadcast the Supply Air Temperature to the VAV/Zone Controller and don’t have a Box Air Temperature Sensor attached to the AUX input on the VAV/Zone Controller board, this line will display the Supply Air Temperature the same as line 2.

If you have a Box Air Temperature Sensor attached to the AUX input on the VAV/Zone Controller board, this line will display the Box Air Temperature at the location where the Box Air Temperature Sensor is installed.
VAV/Zone Status Screens

Status Screen #5 - Zone Damper Position, Airflow, and Desired CFM

<table>
<thead>
<tr>
<th>XX Box v4.01 IDXXXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damper FRC: XXX %</td>
</tr>
<tr>
<td>Airflow : XXXX CFM</td>
</tr>
<tr>
<td>Desired : XXXX CFM</td>
</tr>
</tbody>
</table>

Line 2 Current Zone Damper Position
If you entered a FORCE command, the letters FRC will appear. If this is normal damper operation, the FRC will not be displayed.

Line 3 If this is a Pressure Independent box, the current Airflow will be displayed. If not, this line will display the desired damper position.

Line 4 If this is a Pressure Independent box, this line will display the Desired CFM the box would like to provide to the zone. If not, this line will display [Controls to +/- 3%] to indicate how accurately the damper will maintain the desired position.

Status Screen #6 - Fan Status & Reheat Stages

<table>
<thead>
<tr>
<th>XX Box v1.04 IDXXXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan Status : OFF</td>
</tr>
<tr>
<td>Heating Relay#1 : OFF</td>
</tr>
<tr>
<td>Heating Relay#2 : OFF</td>
</tr>
</tbody>
</table>

Line 2 If this is a Fan Powered box, this line will display the Fan On/Off Status. On non-fan powered boxes, this line will display [Exp Relay 1 Not Used].

Line 3 If your VAV/Zone Controller has been configured to control reheat stages, this line reflects the On/Off Status of the first stage of Reheat. If you have 3 stages of reheat as explained on line 2, this line will be blank.

Line 4 If your VAV/Zone Controller has been configured to control reheat stages, this line reflects the On/Off Status of the second stage of Reheat. If you have 3 stages of reheat as explained on line 2, this line will be blank.

Examples:
- “1 Reheat Stages On” or
- “2 Reheat Stages On” or
- “3 Reheat Stages On”

If proportional heating is used (you have no relays configured for heat), this line will display “Heating Signal: xxx %”.

Line 4 If your VAV/Zone Controller has been configured to control reheat stages, this line reflects the On/Off Status of the second stage of Reheat. If you have 3 stages of reheat as explained on line 2, this line will be blank.

Status Screen #7 - Alarm Status

<table>
<thead>
<tr>
<th>XX Box v1.04 IDXXXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO ALARMS!</td>
</tr>
</tbody>
</table>

Line 2 Blank

Line 3 NO ALARMS!
This is displayed if no alarms are detected. If there are one or more alarms active, the possible messages are shown below:

SPACE SENSOR FAILURE
CFM SENSOR FAILURE
DAMPER OPENING ALARM
DAMPER CLOSING ALARM
HI SPACE TEMP ALARM
LO SPACE TEMP ALARM
DPR FEEDBACK FAILURE

Line 4 Blank

For Alarm Definitions, see the VCM-X Controller Technical Guide, the VCM-X Modular E-BUS Controller Technical Guide, or the RNE Controller Technical Guide.
MiniLink PD Configuration

In order to correctly setup the MiniLink PD, you must first configure several parameters in regard to the type of system and operating parameters for the system it is installed on. Most of these values and operating parameters are only set once at the initial system setup and are never changed.

System Manager Instructions

From any Menu Screen, press the <SETPOINTS> button. The Unit Selection Screen will appear requesting that you enter the unit ID number. All MiniLink PDs are set at address 60. Enter the correct unit loop number for the loop the MiniLink Polling Device is connected to (Loop 1 you would enter 1) and then enter <60>. Press <ENTER>. You will see the screen shown below.

Configuration Screen #1 - System Type

Polling Unit Config
System Type Selection: X
[0=Zoning 1=VAV]

This screen allows you to select whether you want the system to behave as a VAV system or a Zoning System. If you select VAV, this will allow tenant logging for your VAV system.

Configuration Screen #2 - Last Polled Zone

Polling Unit Config
Last Polled Zone Address: XX
[Enter Last Zone]

This zone is the last zone on the local loop of your zoning system that is to be included in zone voting.

Configuration Screen #3 - Mode Changeover Time

Polling Unit Config
Mode Changeover Time Minutes: XX
[Enter Period Time]

This is the amount of time that you want to allow between changeover from heating to cooling modes.

Configuration Screen #4 - Optimal Start Target Zone

Polling Unit Config
Optimal Start Target Zone: XXX
[Enter Target Zone]

This is the unit ID of the Zone that you want to be satisfied by the normally scheduled start time. If you enter “-1” into this box, it will average all zones instead of picking a specific zone. If you do not require Optimal Start, enter “0”.

Configuration Screen #5 - Maverick Testing

Polling Unit Config
Maverick Testing Disabled: YES
[0=NO 1=YES]

Disabling the Maverick Testing allows known troubled zone(s) to continue voting without causing a Maverick alarm. In other words, all zones are included in the voting regardless of whether they are more than four degrees from setpoint.

Configuration Screens #6-65 - Alarm Polling

Polling Unit Config
Enable Alarm Polling Unit XX : YES
[0=NO 1=YES]

Enabling Alarm Polling allows any alarm from the loop to be polled. You must set this for each controller on the loop.
MiniLink PD Status

Status Screen #1 - Schedule Mode, System Status, and Minutes Left

Line 2 Current Schedule Mode
Can be System Occupied or System Unoccupied.

Line 3 Currently System Status
Can be Vent Mode, Cooling Mode, or Heat Mode.

Line 4 Minutes Left In Mode
The number of minutes left in the current mode of operation before it can switch modes. This value is user-adjustable. See Configuration Screen #3.

Status Screen #2 - Mode Priority, Cool Total, and Heat Total

Line 2 Mode Priority
Can be Heat Priority or Cool Priority. This is based on the voting zones and their demand.

Line 3 Cool Total
Total cooling temperature demand from all zones.

Line 4 Heat Total
Total heating temperature demand from all zones.
Damper Force Modes

Damper Force Modes are available for testing or balancing the system. These Force Modes can be accessed and programmed from either the System Manager or Modular Service Tool.

System Manager Instructions

To access the Damper Force Modes from the System Manager, press `<SETPOINTS>`. You will then see the Unit ID Screen. Enter the unit ID of the controller you wish to access and press `<ENTER>`. The following screen will appear:

1) Change Setpoint
2) Configure Unit
3) Dampers Force
ESC) Exit Menu

Press `<3>` on the keypad and then press `<ENTER>`. You will then see the Unit ID Screen. Enter the unit ID of the controller you wish to access and press `<ENTER>`. At this time the Passcode Screen will be displayed. Enter your level 2 passcode. Press `<ENTER>` and the Damper Force Modes Screen will be displayed.

Modular Service Tool Instructions

When using the Modular Service Tool, simply press the `<BALANCE - TEST>` key. You will then see the Unit ID Screen. Enter the unit ID of the controller you wish to access and press `<ENTER>`. The following screen will be displayed:

1) Outputs Force
2) Dampers Force
ESC) Exit Menu

Press `<2>` to access the Dampers Force Mode Screen.

Dampers Force Mode Screen

If the unit ID you entered is for a VCM-X or RNE Controller that has VAV/Zone Controllers connected to its communication loop, the Damper Force Mode will act as a “Global” Damper Force Mode. That is, all VAV/Zone Controllers on that VCM-X or RNE Controller’s communication loop will be forced to the same Damper Force Mode setting. If the unit ID you entered is for a VAV/Zone Controller, the Damper Force Mode setting will only apply to that VAV/Zone Controller.

Set the appropriate Damper Force Mode by entering numbers 0 through 5. Following is a list of the force modes and their meaning:

- **0 = Auto** This is the default setpoint. With this setting, the damper will operate normally and modulate according to the controller setpoints.
- **1 = Open** This setting will force the dampers to their fully-open position.
- **2 = Clsd** This setting will force the damper to its fully-closed position.
- **3 = Max** This setting will force the damper to its Maximum Position Setpoint. See VAV/Zone Controller Setpoint Screen #5 on page 60 for complete setpoint information.
- **4 = Min** This setting will force the damper to its Minimum Position Setpoint. See VAV/Zone Controller Setpoint Screen #5 on page 60 for complete setpoint information.
- **5 = Fixed** This setting will force the damper to a fixed position based on the Fixed Position Setpoint. See VAV/Zone Controller Setpoint Screen #8 on page 61 for complete setpoint information.

CAUTION: The Damper Force Modes should only be used by qualified service personnel. Serious damage to the ductwork could result if the dampers are all forced closed and the HVAC unit fan is operating.
Outputs Force

Outputs Force settings are available for testing or troubleshooting the system. These Force settings can only be accessed and programmed from the Modular Service Tool. The System Manager does not allow for programming of this function.

CAUTION: The Outputs Force settings should only be applied by qualified service personnel. Serious damage to the HVAC unit could result from improper use of these Outputs Force settings.

To access the Outputs Force settings, simply press the <BALANCE-TEST> button on the Modular Service Tool. You will then see the Unit ID Screen. Enter the unit ID of the VCM-X or RNE Controller you wish to access and press <ENTER>. The Outputs Force settings are only available for the VCM-X or RNE Controller. They are not supported for the VAV/Zone Controllers or other Add-on controllers. If you enter a unit ID for any other type of unit except a VCM-X or RNE Controller, the following screen will be displayed:

Unit XXX Does Not Support The Function
Press Any Key To Continue

If you entered the unit ID of a VCM-X or RNE Controller, the following screen will be displayed:

1) Outputs Force
2) Dampers Force

Press <1> to access the Outputs Force Screen.

The first Outputs Force Screen allows the AHU fan relay to be set for Auto, ON, or OFF by entering a 0, 1, or 2 as desired. The default setting is 0=Auto. After you complete all troubleshooting or testing procedures, all relays should be changed back to this setting. The 1=ON setting will force the relay to the ON (energized) position. The 2=OFF selection will force the relay to the OFF (de-energized) position.

The next screen displays the Relay Overrides for Relay 2. After pressing <ENTER>, the next relay will be displayed. All 20 Relay Override Screens (including the AHU fan relay) are available by pressing <ENTER> after each setting is made.

After the screen for relay 21 is displayed, the first Analog Output Override Screen will be displayed.

Analog Output 1 Screen

Analog Output #1
Override Volts: -1.0
[-1.0=Auto]

Analog Output 2 Screen

Supply VFD Override
Analog Output #2
Override Volts: -1.0
[-1.0=Auto]

Analog Output 3 Screen

Exhaust VFD Override
Analog Output #3
Override Volts: -1.0
[-1.0=Auto]
VCM-X / RNE Outputs Force

Analog Output 4 Screen
Mod Heating Override
Analog Output #4
Override Volts: -1.0
[-1.0=Auto]

Analog Output 5 Screen
Mod Cooling Override
Analog Output #5
Override Volts: -1.0
[-1.0=Auto]

Analog Output 6 Screen
RA Damper Override
Analog Output #6
Override Volts: -1.0
[-1.0=Auto]

Analog Output 7 Screen
RA Bypass Override
Analog Output #7
Override Volts: -1.0
[-1.0=Auto]
INDEX

A

Adaptive Defrost Timer Adjustment........46
Address, Entering........9
AHU Heat Call Space Temperature, VAV/Zone......60
Airflow
 VAV/Zone Status........65
Alarm Relay Configuration........27,37
Alarms
 Button........9
 Clearing........11,13
 MiniLink Polling........11,66
 Modular Service Tool........11,13
 Search Screen........13
 VAV/Zone Status........65
Alarms for VCM-X / RNE........57
Analog Output Override Screen........69
Arrow Keys, Defined........8
Auto Damper Force Mode........68
Automatic Power Down........14

B

Balance-Test Button........69
 Defined........9
Box Air Temperature
 VAV/Zone Status........64
Box Configuration
 VAV/Zone........58
Box Heat Allow
 VAV/Zone........59
Broadcast
 Internal Schedule Screen........26,35
 Internal Time Clock Screen........25,35
 Outdoor Air Humidity Screen........25,35
 Outdoor Air Temperature Screen........25,35
 Status Fan & Heat Screen........25,35
 Supply Temperature Screen........25,35
 VAV Boxes Force to Fix Screen........26,36
 VAV Boxes Force to Max Screen........26,36
 Broadcast to Multiple Loops........26,36

Building Pressure
 Deadband Setpoint........44
 Modulating Control Screen........24,34
 Output %........53
 Output Signal Screen........24,34
 Reverse Acting Control Screen........24,34
 Setpoint........44
 VCM-X / RNE Status........53
Buttons
 Balance Test........69
 Configuration........58
 Overrides........12
 Schedule........16
 Setpoints........38,58
 Status........49
 Bypass Damper........19,29
 Bypass Damper Signal........56

C

CFM, Outdoor Air........23,32
CFM, Return Air........23,33
CFM, Supply Air........23,33
Change Passcodes........12
Circuit A........55
Circuit A Temperature........54
Circuit B........55
Circuit B Temperature........54
Clear Alarms........13
 Alarms........11
Clear Key
 Defined........8
Closed
 Damper Force Mode........68
CO₂
 Level........52
 Protection Limit Max Level........44
 Protection Limit Reset Range........44
 Protection Limit Setpoint........44
 Sensor Maximum Scale Screen........24,33
 Sensor Output Signal Screen........24,33
Coil 1 Temperature........54
Coil 2 Temperature........54
Coil A1 Temperature........54
Coil A2 Temperature........54
Coil B1 Temperature........54
Coil B2 Temperature........54
Coil Suction Temperature........54
Coil Temperature........51,54,55
Coil Temperature Setpoint........51
Coil Temperature Status........54
CommLink........10
Communications Screen........10,13
Compressor A1........54
INDEX

C-D

Compressor A2........54
Compressor A Signal........55
Compressor B1........54,55
Compressor B2........54,55
Compressor B Signal........55
Condenser Fan Speed........56
Configuration........58
 Button........9,19,58
 Reset Interval Rate........20,30
 Screen Index........18
Configuring
 Main Fan Maximum Voltage........26,36
 Multiple System Managers Mode........10
 Network Mode........10
 Stand-Alone Mode........10
Connection Diagram
 Modular Service Tool........4
 System Manager........5
Continuous OFF Mode........16
Continuous ON Mode........16
Controlling
 Outdoor Air CFM........43
Control Outdoor Air CFM........23,32
Cooling Head Pressure Setpoint........42
Cooling & Heating Stage Delays Screens........27,37
Cooling Min Off Time........27,37
Cooling Min Run Time........27,37
COOLING ONLY BOX
 VAV/Zone........58
Cooling Setpoints, VAV/Zone Status........64
Cooling Stage Relay........57
Cooling Stage Relay Configuration........27,37
Cooling Status
 VCM-X / RNE Controller........49
Cool Total
 MiniLink PD Status........67
Current Active Supply Air Setpoint........49
Current CO₂ Level........52
Current Economizer Open Percentage........52
Current Supply Air Temperature........49
Current Wetbulb Temperature........52
Cutoff Temperature Setpoints........41

D

Damper Airflow
 Cool/Heat Minimum........61
 Fan On Min........61
 Fixed Position........61
 Integral........60
 Maximum........61
 Night Minimum........61
 Reheat Minimum........61,62
 Vent Minimum........61
Damper Force
 Modes........68
Damper Operation
 VAV/Zone........58
Dampers Forced Closed........68
Data Entry Keys
 Described........8
Date
 Programming........15
Daylight Savings........15
 Time Auto Adjust Screen........15
Day/Night Schedule
 VAV/Zone........62
Deadband
 Outdoor Air CFM........43
DEC Key
 Defined........8
Defrost Adaptive Timer........46
Defrost Heat Wheel Setpoint........47
Dehumidification
 Coil Temperature Setpoint........42
 Control Screen........20,30
 Indoor RH & OA Dewpoint Setpoints........42
 Priority Screen........20,30
 Unoccupied Screen........20,30
Desired CFM
 VAV/Zone Status........65
Dewpoint Temp
 VCM-X / RNE Status........51
Digital Compressor Signal Screen........21
Digital Scroll Compressor........22,55
Dimensions
 Modular Service Tool........3
 System Manager........3
Direct Acting Control........44
Display Screen
 Described........8
Duct/Damper Size
 Outdoor........32
 Return........33
 Supply Air........33
 VAV/Zone........59

VCM-X / RNE Operator Interfaces Technical Guide
E

Economizer
- Control Screen.........20,30
- Maximum Position if High CO₂ Level Setpoint........43
- OAT/WB Enable Setpoint........43
- Overrides............69
- Relay Configuration........27,37
- Status............49
- Economizer %........52
- Economizer Open Percentage........52
- Economizer Relay........57
- Emergency Heat Configuration........27,37
- Emergency Shutdown Input........25,34
- Energy Saving........15
 - Screen........14
 - Timer........14
- Enter
 - Key........8
 - New Passcode........12
- ESC Key, Defined........8
- Exhaust Fan Relay........57
- Exhaust Fan Relay Configuration........27,37
- Exhaust VFD Override........69
- Expansion Relays Heating Stages
 - VAV/Zone........59

F

Fan On Min........61
- Fan Status........65
- Fan VFD Percentage........19,29
- Firestat Input........25,34
- Fixed Damper Force Mode........68
- Fixed Position Damper Airflow........61
- Free Cooling........43
- Full Digital Module........53,54,55
 - Coil Temperature Status........54
 - Signal Status........55
 - Status Screen........54
- Full Digital Module Screen........22
- Full Digital Signal........55
- Full Digital Temperature........54

G

Gas Reheat Relay........57

H

H/C Changeover Box VAV/Zone........58
- Head Pressure Condenser Fan #1 Status........56
- Head Pressure Condenser Fan #2 Status........56
- Head Pressure Cooling Setpoint Status Screen........48,56
- Head Pressure Module Screen........22,32
- Head Pressure Reheat Setpoint Status Screen........48,56
- Head Pressure Setpoint Cooling........42
- Head Pressure Setpoint Reheat........42
- Heat During Dehumidify Screen........20,30

Heating
- Min Off Time........27,37
- Min Run Time........27,37
- Setpoints........64
- Stage Down........27,37
- Stage Up........27,37
- Status........49
- Heating/Cooling Demand VAV/Zone Status........64
- Heating Stage Relay........57
- Heating Stage Relay Configuration........27,37
- Heat Pump
 - Auxiliary Heating Delay........46
 - Control Screen........24,34
- Heat Pump Defrost Settings........46
- Heat Pump Defrost Temperature........46
- Heat Pump Defrost Timer........46
- Heat Reset Source Setpoints........40
- Heat Total MiniLink PD Status........67
- Heat Wheel Defrost Setting........47
- Heat Wheel Relay........57
- HGR Relay........57
- Hi SAT Cutoff........41

Holidays
- Programming........16
- Start/Stop Times........17

HVAC Mode
- Cooling Setpoints........39
- Heating Setpoints........39
- Reset Source Screen........19,29
- Schedule Setpoint........45
- Select Deadband Source........39
- Sensor Slide Offset Setpoint........46
- Setpoints........39
- HVAC Mode Enable Screen........19,29
- HVAC Reset Source........19,29
- Fan VFD Percentage........19,29
- No Reset........19,29
- Outdoor Air Temperature Sensor........19,29
- Remote Reset Signal........19,29
- Return Air Temperature Sensor........19,29
- Single Zone VAV........19,29
- Space Temperature Sensor........19,29
INDEX

I

Indoor
 Humidity Screen.........20,30
 RH...............51
 RH Setpoint.........51
Initialization
 Modular Service Tool........13
 Screen...........13
 System Manager........10
Internal Schedule Optimal Start Soak Multiplier
 Setpoint...........47

K

Keys
 Described........8
 Function..........8

L

Last Polled Zone
 MiniLink PD.........66
Leaving Water Temperature.........50
Level 1 User, Defined.............12
Level 2 User, Defined.............12
Loop
 Address...........9
 Search..........11
 Search Screen......11
Lo SAT Cutoff............41
Lowest Coil...........51

M

Main Fan.........26,36
Main Fan Maximum Voltage.........26,36
Main Fan Status
 VAV/Zone.........59
Maverick Testing
 MiniLink PD.........66
Maximum
 Damper Force Mode.........68
 EMS Offset VAV/Zone.........63
 Slide Offset VAV/Zone.........62
Maximum Outdoor Air CFM.........43
Maximum Voltage.........26,36
Maximum Voltage for Main Fan.........26,36
Max OA Damper Tempering Limit.........45
Mechanical Heat/Cool Failure Time
 Period Setpoint.........45
MHGRV Output % VCM-X / RNE Status.........53
 Min Damper Force Mode.............68
 MiniLink PD Configuration.........66
 Alarm Polling........66
 Last Polled Zone........66
 Maverick Testing........66
 Mode Changeover Time........66
 Optimal Start Target Zone........66
 System Type........66
 MiniLink PD Status........10
 Adding Additional........11
 Cool Total........67
 Heat Total........67
 Minutes Left........67
 Mode Priority........67
 Schedule Mode........67
 System Status........67
Minimum Outdoor Air CFM.........43
Minimum Run Times and Off Times.........27,37
Min Supply Fan VFD Speed
 for Heating Setpoint.........41
Minutes Left
 MiniLink PD Status.........67
MM (Multiple System Manager Mode).........10
Mode
 Cooling %........53,56
 Cooling Override.........70
 Heating %........53
 Heating Override.........70
Mode Changeover Time.........66
Cooling Setpoint.........49
Enable Temperature.........49
Heating Setpoint.........49
of Operation.........13,64
Priority........67
Selection Buttons Defined........8
 VCM-X / RNE Status Screen........49
MODGAS Output %
 VCM-X / RNE Status.........53
 VCM-X / RNE Status Screen.........49
Modular Service Tool.........13
 Alarms Button.........13
 Alarm Search.........13
 Configuration Button.........19
 Connection Diagram.........4
 Defined........3
 Dimensions........3
 Energy Saving Timer.........14
 Initialization.........13
 Initialization Screen.........13
 Mode Selection Buttons.........9
 Network Configuration.........13
 Overrides Button.........14
 Override Search.........14
INDEX

M-P

Overrides Tool........13
Stand-Alone Configuration........13
VCM-X / RNE Setpoints........38

Modular System Manager
 Connection Diagram........5
 Defined........3
 Dimensions........3
 Network Connection........5
 Stand-Alone Connection........7

Modulating
 Cooling/Heating Screen........21,31
 Cooling Output Signal Screen........21
 Cooling Proportional Window Screen........22,32
 Cooling Reverse Acting Screen........22,32
 Heating Output Signal Screen........21,31
 Heating Proportional Window Screen........21,31
 Heating Reverse Acting Screen........21,31

Modulating Cooling Type
 0-10 VDC CW........31
 2-10 VDC CW........31
 VFD Full........31
 VFD Half........31

Modulating Cooling Type Screen........31

Monitor Supply Air CFM........23,33
Month........15

Morning Warm Up
 Max Length........41
 Target Temp........41
 Temp Setpoint........41

Multiple Loops........26,36
Multiple MGRS........10

Multiple System Managers Mode
 Configuring for........10

N

Network Configuration
 Modular Service Tool........13

Network Connection
 Modular System Manager........5

Network Mode (NM)........13
 Configuring for........10

Night Minimum
 Damper Airflow........61
 No Reset........19,29

O

OA Dewpoint
 VCM-X / RNE Status........51

Occupied
 Mode........17
 Setpoints........60

Occupied Relay........57
Occupied Relay Configuration........27,37

OE332-23-VCMX-MOD-A........22,26,54,55
OE332-23-VCMX-MOD-C........22,54,55
OE370-23-DD........54,55
OE370-23-FD-A........54,55
OE391-11........3
OE392-07........3

OFF Mode, Continuous........16
ON Mode, Continuous........16

Open Damper Force Mode........68

Optimal Start Target Zone
 MiniLink PD........66

Outdoor
 Humidity Sensor Screen........20,30
 Temperature........51

Outdoor Air
 Configuration........19,29
 Cooling & Heating Lockouts Setpoints........41
 Relative Humidity........51
 Temperature........51

Outdoor Airflow
 VCM-X / RNE Output........52

Outdoor Air CFM........43,52
Outdoor Air CFM Deadband........43
Outdoor Air Setpoint........52

Outdoor Air Temperature Sensor........19,29

Outdoor Duct/Damper Size........23,32

Outputs Force Screen........69

Override Relay........57

Override Relay Configuration........27,37

Overrides
 Button........9,12,14
 Screen........12,14
 Search........12,14

P

PARALLEL FAN BOX
 VAV/Zone........58

Passcode
 1111........12
 2222........12
 Clearance........10
 Codes........12
 Enter New........12
 System Manager........12

Power/Comm Board Wiring........6

Power Down........14

Preheat Ambient Temperature........45

Pre-Heater Relay........57

Pre-Heater Relay Configuration........27,37

Pressure Independent Airflow Constant
 VAV/Zone........58
INDEX

P-R

P-R

Programming
 Configuring RNE........29
 Date........15
 Daylight Savings........15
 Day of Week.........15
 Holidays.........16
 Holiday Start/Stop Times.........17
 Month........15
 Time & Date........15
 Year.........15
Proof of Flow Input Screen........21,31
Proportional Heating Signal
 VAV/Zone.........59
Push-Button Override
 Duration........63
 Duration Setpoint........46
 VAV/Zone.........59

R

R22 Refrigerant.........42
R410A Refrigerant Screen........26,36
RA Bypass Override.........70
RA Damper Override.........70
Real Time Clock.........15
Refrigerant.........42
Reheat Head Pressure Setpoint.........42
Reheat Minimum Damper Airflow.........61,62
Re-Heat Relay.........57
Reheat Relay Configuration.........27,37
Reheat Stages.........65
Relay
 Configuration Screens.........27,37
 Overrides.........69
Relay Configuration
 Alarm........27,37
 Cooling Stage.........27,37
 Economizer.........27,37
 Emergency Heat.........27,37
 Exhaust Fan.........27,37
 Occupied.........27,37
 Override.........27,37
 Pre-Heater.........27,37
 Reheat.........27,37
 Reversing Valve.........27,37
 Warm-up Mode.........27,37
Relays.........57
Remote Reset Signal.........19,29
Remote Signal Contact.........16
Reset Source.........19,29
 Cooling Setpoint.........39
 Reset Interval Rate Screen.........20,30
Return Air
 Bypass Control Screen.........25,34
 Bypass Damper Factor Setpoint.........44
 Configuration.........19,29
Return Air CFM
 Status.........52
Return Air Damper Signal.........56
Return Air Temperature.........50
Return Air Temperature Sensor.........19,29
Return Duct/Damper Size.........23,33
Reverse Acting Control.........44
Reversing Valve Active During Heat/Cool.........24,34
Reversing Valve Relay.........57
Reversing Valve Relay Configuration.........27,37
RNE Controller.........49
 Alarm Conditions.........57
 Analog Output Override.........69
 Building Pressure Output %.........53
 Bypass Damper Signal.........56
 Coil Temperature.........51
 Configuration Screens.........29
 Cooling.........49
 Damper Force Modes.........68
 Date.........15
 Dewpoint Temp.........51
 Economizer.........49
 Economizer Overrides.........69
 Exhaust VFD Override.........69
 Heating.........49
 Holidays.........16
 Holiday Start/Stop Times.........17
 Indoor RH Setpoint.........51
 Leaving Water Temperature.........50
 MHGRV Output %.........53
 Mod Cooling %.........53,56
 Mod Cooling Override.........70
 Mode.........49
 Mode Cooling Setpoint.........49
 Mode Enable Temperature.........49
 Mode Heating Setpoint.........49
 MODGAS Output %.........53
 Mod Heating %.........53
 Mod Heating Override.........70
 OA Dewpoint.........51
 Occupied Mode.........17
 Outdoor Air Relative Humidity.........51
 Outdoor Air Temperature.........51
 Outputs Force.........69
 RA Bypass Override.........70
 RA Damper Override.........70
 Relay Overrides.........69
 Return Air Damper Signal.........56
 Schedule Override.........17
INDEX

RNE Tonnage
55 - 75 Tons........32
95 - 105 Tons........32
120 - 140 Tons........32
RNE Tonnage Screen........32

S

SA (Stand Alone)........10
SAT Heating Setpoints........40
Saturation Vapor Pressure........42
Schedule
 Button........9,16
 Mode........67
 Override........16,17
 Time & Date........15
Scheduling
 VCM-X / RNE Controller........16
Screens
1 HVAC Unit w/Boxes on Multiple Loops........26,36
Adaptive Defrost Adjustment Setpoint........46
Alarm Search Screen........13
Analog Output Override Screen........69
Broadcast Internal Schedule Screen........26,35
Broadcast Internal Time Clock Screen........25,35
Broadcast Outdoor Air Humidity Screens........25,35
Broadcast Outdoor Air Temperature Screen........25,35
Broadcast Status Fan & Heat Screens........25,35
Broadcast Supply Temperature Screen........25,35
Broadcast VAV Boxes Force to Fixed Screen........26,36
Broadcast VAV Boxes Force to Max Screen........26,36
Building Pressure Deadband Setpoint........44
Building Pressure Modulating Control Screens........24,34
Building Pressure Output Signal Screens........24,34
Building Pressure Reverse Acting Screens........24,34
Building Pressure Setpoint........44
CO2 Protection Limit Setpoint........44
CO2 Sensor Maximum Scale Screen........24,33
CO2 Sensor Output Signal Screen........24,33
Communications Screen........10,13
Configuration Screens........18
Control Outdoor Air CFM........23,32
Cooling & Heating Stage Delays Screens........27,37
Cool Reset Source Setpoints........39
Cutoff Temperature Setpoints........41
Daylight Savings Time Auto Adjust Screen........15
Dehumidification Coil Temperature Setpoints........42
Dehumidification Control Screens........20,30
Dehumidification Indoor RH & OA Dewpoint
 Setpoints........42
Dehumidification Priority Screen........20,30
Dehumidification Unoccupied Screens........20,30
Digital Compressor Signal Screen........21
Dual Digital........22
INDEX

S

<table>
<thead>
<tr>
<th>SCREENS, continued</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duct Static Pressure Screen</td>
<td>19,29</td>
</tr>
<tr>
<td>Economizer Control Screen</td>
<td>20,30</td>
</tr>
<tr>
<td>Economizer Maximum Position if High CO₂ Level Setpoint</td>
<td>43</td>
</tr>
<tr>
<td>Economizer Minimum Position & Control Rate Setpoints</td>
<td>43</td>
</tr>
<tr>
<td>Economizer OAT/WB Enable Setpoint</td>
<td>43</td>
</tr>
<tr>
<td>Economizer Overrides</td>
<td>69</td>
</tr>
<tr>
<td>Emergency Shutdown Input</td>
<td>25,34</td>
</tr>
<tr>
<td>Energy Saving Screen</td>
<td>14</td>
</tr>
<tr>
<td>Exhaust VFD Override</td>
<td>69</td>
</tr>
<tr>
<td>Full Digital Module</td>
<td>22</td>
</tr>
<tr>
<td>Head Pressure Module</td>
<td>22,32</td>
</tr>
<tr>
<td>Head Pressure Setpoint Cooling</td>
<td>42</td>
</tr>
<tr>
<td>Head Pressure Setpoint Reheat</td>
<td>42</td>
</tr>
<tr>
<td>Heat During Dehumidify Screen</td>
<td>20,30</td>
</tr>
<tr>
<td>Heat Pump Auxiliary Heating Delay</td>
<td>46</td>
</tr>
<tr>
<td>Heat Pump Control</td>
<td>24,34</td>
</tr>
<tr>
<td>Heat Pump Defrost Setpoints</td>
<td>46</td>
</tr>
<tr>
<td>Heat Reset Source</td>
<td>40</td>
</tr>
<tr>
<td>Heat Wheel Defrost Setpoint</td>
<td>47</td>
</tr>
<tr>
<td>Holiday Schedule</td>
<td>17</td>
</tr>
<tr>
<td>HVAC Mode Enable Screen</td>
<td>19,29</td>
</tr>
<tr>
<td>HVAC Mode Select Deadband Setpoints</td>
<td>39</td>
</tr>
<tr>
<td>HVAC Mode Sensor Slide Offset Setpoint</td>
<td>46</td>
</tr>
<tr>
<td>HVAC Mode Setpoints</td>
<td>39</td>
</tr>
<tr>
<td>HVAC Reset Source</td>
<td>19,29</td>
</tr>
<tr>
<td>HVAC Schedule Setpoint</td>
<td>45</td>
</tr>
<tr>
<td>Indoor Humidity Sensor Screen</td>
<td>20,30</td>
</tr>
<tr>
<td>Initialization for Modular Service Tool</td>
<td>13</td>
</tr>
<tr>
<td>Initialization Screen</td>
<td>10</td>
</tr>
<tr>
<td>Internal Schedule Optimal Start Soak Multiplier Setpoint</td>
<td>47</td>
</tr>
<tr>
<td>Loop Search Screen</td>
<td>11</td>
</tr>
<tr>
<td>Max OA Damper Tempering Limit</td>
<td>45</td>
</tr>
<tr>
<td>Mechanical Heat/Cool Failure Time Period Setpoints</td>
<td>45</td>
</tr>
<tr>
<td>MiniLink PD Configuration</td>
<td>66</td>
</tr>
<tr>
<td>Minimum Supply Fan VFD Speed for Heating Setpoint</td>
<td>41</td>
</tr>
<tr>
<td>Mod Cooling Override</td>
<td>70</td>
</tr>
<tr>
<td>Mod Heating Override</td>
<td>70</td>
</tr>
<tr>
<td>Modulating Cooling/Heating Screen</td>
<td>21,31</td>
</tr>
<tr>
<td>Modulating Cooling Output Signal</td>
<td>21</td>
</tr>
<tr>
<td>Modulating Cooling Proportional Window Screen</td>
<td>22,32</td>
</tr>
<tr>
<td>Modulating Cooling Reverse Acting Screens</td>
<td>22,32</td>
</tr>
<tr>
<td>Modulating Cooling Type</td>
<td>31</td>
</tr>
<tr>
<td>Modulating Heating Output Signal Screen</td>
<td>21,31</td>
</tr>
<tr>
<td>Modulating Heating Proportional Window Screen</td>
<td>21,31</td>
</tr>
<tr>
<td>Modulating Heating Reverse Acting Screen</td>
<td>21,31</td>
</tr>
<tr>
<td>Monitor Outdoor Air CFM</td>
<td>23,32</td>
</tr>
<tr>
<td>Monitor Return Air CFM</td>
<td>23,33</td>
</tr>
<tr>
<td>Monitor Supply Air CFM</td>
<td>23,33</td>
</tr>
<tr>
<td>Morning Warm Up Temp Setpoint</td>
<td>41</td>
</tr>
<tr>
<td>Outdoor Air CFM Deadband Setpoint</td>
<td>43</td>
</tr>
<tr>
<td>Outdoor Air CFM Setpoint</td>
<td>43</td>
</tr>
<tr>
<td>Outdoor Air Cooling & Heating Lockouts Setpoints</td>
<td>41</td>
</tr>
<tr>
<td>Outdoor Duct/Damper Size</td>
<td>23,32</td>
</tr>
<tr>
<td>Outdoor Humidity Sensor Screen</td>
<td>20,30</td>
</tr>
<tr>
<td>Outputs Force Screen</td>
<td>69</td>
</tr>
<tr>
<td>Overrides Screen</td>
<td>12,14</td>
</tr>
<tr>
<td>Preheat/Low Ambient Temperature Setpoint</td>
<td>45</td>
</tr>
<tr>
<td>Proof of Flow Input Screen</td>
<td>21,31</td>
</tr>
<tr>
<td>Push-Button Override Duration Setpoint</td>
<td>46</td>
</tr>
<tr>
<td>RA Bypass Override</td>
<td>70</td>
</tr>
<tr>
<td>RA Damper Override</td>
<td>70</td>
</tr>
<tr>
<td>Relay Configuration Screens</td>
<td>27,37</td>
</tr>
<tr>
<td>Relay Overrides</td>
<td>69</td>
</tr>
<tr>
<td>Return Air Bypass Control Screens</td>
<td>25,34</td>
</tr>
<tr>
<td>Return Air Bypass Damper Factor Setpoint</td>
<td>44</td>
</tr>
<tr>
<td>Return Duct/Damper Size</td>
<td>23,33</td>
</tr>
<tr>
<td>Reversing Valve Active During Heat/Cool</td>
<td>24,34</td>
</tr>
<tr>
<td>RNE Configuration Screens</td>
<td>29</td>
</tr>
<tr>
<td>RNE Status Screens</td>
<td>49</td>
</tr>
<tr>
<td>RNE Tonnage</td>
<td>32</td>
</tr>
<tr>
<td>SAT Cooling Setpoints</td>
<td>39</td>
</tr>
<tr>
<td>Schedule Override</td>
<td>17</td>
</tr>
<tr>
<td>Sensor Calibration for COIL</td>
<td>47</td>
</tr>
<tr>
<td>Sensor Calibration for RAT & OAT</td>
<td>47</td>
</tr>
<tr>
<td>Sensor Calibration for SPC & SAT</td>
<td>47</td>
</tr>
<tr>
<td>Set Time & Date Screens</td>
<td>15</td>
</tr>
<tr>
<td>Space Sensor Overrides Screen</td>
<td>12</td>
</tr>
<tr>
<td>Split Condenser</td>
<td>22</td>
</tr>
<tr>
<td>Stage Control Window Setpoints</td>
<td>41</td>
</tr>
<tr>
<td>Static Setpoint, Deadband & Control Rate Setpoints</td>
<td>44</td>
</tr>
<tr>
<td>Supply Duct/Damper Size</td>
<td>23,33</td>
</tr>
<tr>
<td>Supply Fan Cycle Screen</td>
<td>19,29</td>
</tr>
<tr>
<td>Supply Fan Starting Delay Timer Setpoint</td>
<td>45</td>
</tr>
<tr>
<td>Supply VFD Override</td>
<td>69</td>
</tr>
<tr>
<td>Trend Log Interval Setpoint</td>
<td>47</td>
</tr>
<tr>
<td>Unit Selection Screens</td>
<td>9,29</td>
</tr>
<tr>
<td>Unoccupied Cooling & Heating Setbacks Setpoints</td>
<td>39</td>
</tr>
<tr>
<td>Uses R410A</td>
<td>26,36</td>
</tr>
<tr>
<td>VAV/Zone Box Configuration</td>
<td>58</td>
</tr>
<tr>
<td>VAV/Zone Configuration</td>
<td>58</td>
</tr>
<tr>
<td>VAV/Zone Controller Setpoints</td>
<td>60</td>
</tr>
<tr>
<td>VAV/Zone Damper Operation</td>
<td>58</td>
</tr>
<tr>
<td>VAV/Zone Status</td>
<td>64</td>
</tr>
<tr>
<td>VCM-X Configuration Screens</td>
<td>19</td>
</tr>
<tr>
<td>VCM-X / RNE Controller Status Screens</td>
<td>49</td>
</tr>
</tbody>
</table>
INDEX

Water Source Heat Pump Installed........32
Week Schedules........16
WSHP Protection Module........22
Search
For Loops........11
For Overrides........12
Selection Buttons, Defined........9
Sensor
RAT & OAT Setpoint........47
Sensor Calibration
COIL........47
Space Temperature........63
SPC & SAT Setpoint........47
Supply Air Temperature........63
SERIES FAN BOX
VAV/Zone........58
Setpoints........43
Button........9,19,38,58
Cool Reset Source........39
Defrost Heat Wheel........47
SAT Heating Setpoints........40
Setting
Date........15
Day of Week........15
Month........15
Year........15
Signal Percentage........55
Signal Status........55
Single Zone VAV Mode........19,29
Slide Adjust........50
Slide Offset
VAV/Zone Status........64
Smoke Detector Input........25,34
Software, Current Version........10
Space Sensor Overrides Screen........12
Space Temperature........50
Configuration........19,29
Space Temperature Return Air and Slide Adjust
VCM-X / RNE Status........50
Space Temperature Sensor........19,29
Split Condenser Screen........22
Stage 1 Signal Percentage........55
Stage 2 Signal Percentage........55
Stage Control Window Setpoint........41
Staging Up and Down Delay Periods........27,37
Stand-Alone
Configuration........13
Connection........7
Mode........10,13
Start and Stop Times
2359........16
ZERO........16
Static Pressure
Output % VCM-X / RNE Status........52
VCM-X / RNE Output........52
Static Spt, Deadband & Control Rate Setpoints........44
Status
Button........49
Key........9
Status Screens
Dual Digital Module........48,54
Full Digital Module........54
Head Pressure Condenser Fan #1........56
Head Pressure Condenser Fan #2........56
Outdoor Air CFM........52
Supply Air & Return Air CFM........52
Suction Pressure........42
Suction Pressure Transducer........42
Supply Air
Configuration........19,29
Temperature........64
Supply Air CFM
Status........52
Supply Air & Return Air CFM........52
Supply Air Temperature Reset........19,29
Supply Air Temperature & Setpoint........49
Supply Air with Supply Air Tempering........19,29
Supply Duct/Damper Size........23,33
Supply Fan
Cycle Screen........19,29
Relay........57
Starting Delay Timer Setpoint........45
Supply Fan VFD........19,29
Supply VFD Override........69
System
Status........67
Type........66
System A........50
System A Signal........55
System A Signal Percentage........55
System B........50
System B Signal........55
System B Signal Percentage........55
System Manager
Connection Diagram........5
Dimensions........3
Initialization Screens........10
Mode Selection Buttons........9
Override Search........12
Passcodes........12
Setpoints Button........19
VCM-X Setpoints........38
System Manager TS II........8
INDEX

T-V

T

Temperature
 Circuit A.........54
 Circuit B.........54
 Coil B1.........54,55
 Coil B2.........54,55
 Dual Digital.......54
 Full Digital.......54

Testing the System
 Outputs Force........69

Time
 24-Hour Military Format........16
 Daylight Savings........15

Time & Date.........15

Touch Screen System Manager........8

Trend Log Interval.........47

Troubleshooting the System
 Outputs Force.........69

Two Condenser Head Pressure Module.........56

U

Unit ID
 Entering.........9
 for Network System.........9
 Stand Alone System.........9

Unit Selection Screen.........9,29

Unoccupied
 Cooling & Heating Setbacks Setpoints.........39
 Mode.........17
 Setbacks.........60

V

VAV/Zone
 AHU Heat Call Space Temperature.........60
 Box Heat Allow.........59
 Configuration.........58
 Controllers.........58,68
 COOLING ONLY BOX.........58
 Damper Airflow
 Cool/Heat Minimum.........61
 Integral.........60
 Maximum.........61
 Vent Minimum.........61
 Damper Airflow Fixed Position.........61
 Damper Airflow Night Minimum.........61
 Damper Airflow Reheat Minimum.........61,62
 Day/Night Schedule.........62
 Dump Zone.........59
 Expansion Relays Heating Stages.........59
 H/C CHANGEOVER BOX.........58
 Main Fan Status.........59

 Maximum EMS Offset.........63
 Maximum Slide Offset.........62
 Occupied Setpoints.........60
 PARALLEL FAN BOX.........58
 Pressure Independent Airflow Constant.........58
 Proportional Heating Signal.........59
 Push-Button Override.........59
 Push-Button Override Duration.........63
 Sensor Calibration for Space Temperature.........63
 Sensor Calibration for Supply Air Temperature.........63
 SERIES FAN BOX.........58
 Unoccupied Setbacks.........60
 Voting Zone.........58
 Zone Alarm Delay.........62
 Zone Alarm Offsets.........62

 VAV/Zone Configuration, Damper Operation.........58
 VAV/Zone Setpoints
 AHU Heat Call Space Temperature.........60
 Damper Airflow
 Cool Minimum.........61
 Heat Minimum.........61
 Integral.........60
 Maximum.........61
 Vent Minimum.........61
 Damper Airflow Fixed Position.........61
 Damper Airflow Night Minimum.........61
 Damper Airflow Reheat Minimum.........61,62
 Day/Night Schedule.........62
 Fan On Min.........61
 Maximum EMS Offset.........63
 Maximum Slide Offset.........62
 Occupied Setpoints.........60
 Push-Button Override Duration.........63
 Sensor Calibration for Space Temperature.........63
 Sensor Calibration for Supply Air Temperature.........63
 Unoccupied Setbacks.........60
 Zone Alarm Delay.........62
 Zone Alarm Offsets.........62

 VAV/Zone Status
 Airflow.........65
 Alarm Status.........65
 Box Air Temperature.........64
 Cooling Setpoints.........64
 Desired CFM.........65
 Fan Status.........65
 Heating/Cooling Demand.........64
 Heating Setpoints.........64
 Mode of Operation.........64
 Reheat Stages.........65
 Screens.........64
 Slide Offset.........64
 Supply Air Temperature.........64
 Zone Damper Position.........65
 Zone Temperature.........64

80 VCM-X / RNE Operator Interfaces Technical Guide
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCMX-23-VCMX-WSHP-A</td>
<td>22,26,54,55</td>
</tr>
<tr>
<td>VCMX-23-VCMX-WSHP-C</td>
<td>22,54,55</td>
</tr>
<tr>
<td>VCM-X Controller</td>
<td>49</td>
</tr>
<tr>
<td>Alarm Conditions</td>
<td>57</td>
</tr>
<tr>
<td>Analog Output Override</td>
<td>69</td>
</tr>
<tr>
<td>Building Pressure Output %</td>
<td>53</td>
</tr>
<tr>
<td>Bypass Damper Signal</td>
<td>56</td>
</tr>
<tr>
<td>Coil Temperature</td>
<td>51</td>
</tr>
<tr>
<td>Configuration Screens</td>
<td>19</td>
</tr>
<tr>
<td>Cooling</td>
<td>49</td>
</tr>
<tr>
<td>Damper Force Modes</td>
<td>68</td>
</tr>
<tr>
<td>Date</td>
<td>15</td>
</tr>
<tr>
<td>Dewpoint Temp</td>
<td>51</td>
</tr>
<tr>
<td>Economizer</td>
<td>49</td>
</tr>
<tr>
<td>Economizer Overrides</td>
<td>69</td>
</tr>
<tr>
<td>Exhaust VFD Override</td>
<td>69</td>
</tr>
<tr>
<td>Heating</td>
<td>49</td>
</tr>
<tr>
<td>Holidays</td>
<td>16</td>
</tr>
<tr>
<td>Holiday Start/Stop Times</td>
<td>17</td>
</tr>
<tr>
<td>Indoor RH Setpoint</td>
<td>51</td>
</tr>
<tr>
<td>Leaving Water Temperature</td>
<td>50</td>
</tr>
<tr>
<td>MHGRV Output %</td>
<td>53</td>
</tr>
<tr>
<td>Mod Cooling %</td>
<td>53,56</td>
</tr>
<tr>
<td>Mod Cooling Override</td>
<td>70</td>
</tr>
<tr>
<td>Mode</td>
<td>49</td>
</tr>
<tr>
<td>Mode Cooling Setpoint</td>
<td>49</td>
</tr>
<tr>
<td>Mode Enable Temperature</td>
<td>49</td>
</tr>
<tr>
<td>Mode Heating Setpoint</td>
<td>49</td>
</tr>
<tr>
<td>MODGAS Output %</td>
<td>53</td>
</tr>
<tr>
<td>Mod Heating %</td>
<td>53</td>
</tr>
<tr>
<td>Mod Heating Override</td>
<td>70</td>
</tr>
<tr>
<td>OA Dewpoint</td>
<td>51</td>
</tr>
<tr>
<td>Occupied Mode</td>
<td>17</td>
</tr>
<tr>
<td>Outdoor Air Relative Humidity</td>
<td>51</td>
</tr>
<tr>
<td>Outdoor Air Temperature</td>
<td>51</td>
</tr>
<tr>
<td>Outputs Force</td>
<td>69</td>
</tr>
<tr>
<td>RA Bypass Override</td>
<td>70</td>
</tr>
<tr>
<td>RA Damper Override</td>
<td>70</td>
</tr>
<tr>
<td>Relay Overrides</td>
<td>69</td>
</tr>
<tr>
<td>Return Air Damper Signal</td>
<td>56</td>
</tr>
<tr>
<td>Schedule Override</td>
<td>17</td>
</tr>
<tr>
<td>Scheduling</td>
<td>16</td>
</tr>
<tr>
<td>Space Temperature Return Air and Slide Adjust</td>
<td>50</td>
</tr>
<tr>
<td>Static Pressure Output %</td>
<td>52</td>
</tr>
<tr>
<td>Status Screens</td>
<td>49</td>
</tr>
<tr>
<td>Supply Air Temperature & Setpoint</td>
<td>49</td>
</tr>
<tr>
<td>Supply Fan Relay</td>
<td>57</td>
</tr>
<tr>
<td>Supply VFD Override</td>
<td>69</td>
</tr>
<tr>
<td>Time & Date</td>
<td>15</td>
</tr>
<tr>
<td>Unoccupied Mode</td>
<td>17</td>
</tr>
<tr>
<td>Week Schedules</td>
<td>16</td>
</tr>
<tr>
<td>VCM-X Modular Controller</td>
<td>22,54,55,56</td>
</tr>
<tr>
<td>VCM-X Schedule Holidays</td>
<td>16</td>
</tr>
<tr>
<td>VCM-X Setpoints</td>
<td>38</td>
</tr>
<tr>
<td>Adaptive Timer Defrost Adj. Setpoint</td>
<td>46</td>
</tr>
<tr>
<td>Building Pressure</td>
<td>44</td>
</tr>
<tr>
<td>Building Pressure Deadband</td>
<td>44</td>
</tr>
<tr>
<td>CO₂ Protection Limit</td>
<td>44</td>
</tr>
<tr>
<td>CO₂IL Sensor Calibration</td>
<td>47</td>
</tr>
<tr>
<td>Cool Reset Source</td>
<td>39</td>
</tr>
<tr>
<td>Cutoff Temperature</td>
<td>41</td>
</tr>
<tr>
<td>Dehumidification Coil Temperature</td>
<td>42</td>
</tr>
<tr>
<td>Dehumidification Indoor RH & OA Dewpoint</td>
<td>42</td>
</tr>
<tr>
<td>Economizer Maximum Position if High CO₂ Level</td>
<td>43</td>
</tr>
<tr>
<td>Economizer Minimum Position & Control Rate</td>
<td>43</td>
</tr>
<tr>
<td>Economizer OAT/WB Enable</td>
<td>43</td>
</tr>
<tr>
<td>Head Pressure</td>
<td>42</td>
</tr>
<tr>
<td>Head Pump Auxiliary Heating Delay</td>
<td>46</td>
</tr>
<tr>
<td>Heat Pump Defrost Setpoints</td>
<td>46</td>
</tr>
<tr>
<td>Heat Reset Source</td>
<td>40</td>
</tr>
<tr>
<td>Heat Wheel Defrost Setpoint</td>
<td>47</td>
</tr>
<tr>
<td>HVAC Mode Select Deadband</td>
<td>39</td>
</tr>
<tr>
<td>HVAC Mode Sensor Slide Offset</td>
<td>46</td>
</tr>
<tr>
<td>HVAC Schedule</td>
<td>45</td>
</tr>
<tr>
<td>Internal Schedule Optimal Start Soak Multiplier</td>
<td>47</td>
</tr>
<tr>
<td>Low Ambient Temperature</td>
<td>45</td>
</tr>
<tr>
<td>Max OA Damper Tempering Limit</td>
<td>45</td>
</tr>
<tr>
<td>Mechanical Heat/Cool Failure Time Period</td>
<td>45</td>
</tr>
<tr>
<td>Minimum Supply Fan VFD Speed for Heating</td>
<td>41</td>
</tr>
<tr>
<td>Morning Warm Up Temp</td>
<td>41</td>
</tr>
<tr>
<td>Outdoor Air CFM</td>
<td>43</td>
</tr>
<tr>
<td>Outdoor Air CFM Deadband</td>
<td>43</td>
</tr>
<tr>
<td>Outdoor Air Cooling & Heating Lockouts</td>
<td>41</td>
</tr>
<tr>
<td>Preheat Ambient Temperature</td>
<td>45</td>
</tr>
<tr>
<td>Push-Button Override Duration</td>
<td>46</td>
</tr>
<tr>
<td>Reset Source Cooling</td>
<td>39</td>
</tr>
<tr>
<td>Return Air Bypass Damper Factor</td>
<td>44</td>
</tr>
<tr>
<td>SAT Cooling</td>
<td>39</td>
</tr>
<tr>
<td>SAT Heating Setpoints</td>
<td>40</td>
</tr>
<tr>
<td>Screens</td>
<td>39</td>
</tr>
<tr>
<td>Sensor Calibration for RAT & OAT</td>
<td>47</td>
</tr>
<tr>
<td>Sensor Calibration for SPC & SAT</td>
<td>47</td>
</tr>
<tr>
<td>Stage Control Window</td>
<td>41</td>
</tr>
<tr>
<td>Static Setpoint, Deadband & Control Rate</td>
<td>44</td>
</tr>
<tr>
<td>Supply Fan Starting Delay Timer</td>
<td>45</td>
</tr>
<tr>
<td>Trend Log Interval</td>
<td>47</td>
</tr>
<tr>
<td>Unoccupied Setbacks</td>
<td>39</td>
</tr>
<tr>
<td>VCM-X WSHP Controller</td>
<td>22,26,54,55</td>
</tr>
<tr>
<td>VFD</td>
<td>19,29</td>
</tr>
<tr>
<td>VFD Full</td>
<td>31</td>
</tr>
<tr>
<td>VFD Half</td>
<td>31</td>
</tr>
<tr>
<td>Voltage</td>
<td></td>
</tr>
<tr>
<td>Maximum for Main Fan</td>
<td>26,36</td>
</tr>
<tr>
<td>Voting Zone Configuration</td>
<td>58</td>
</tr>
</tbody>
</table>
INDEX

W-Z

W
Warm-up Mode Relay.........57
Warm-up Mode Relay Configuration.........27,37
Water Source Heat Module
 Coil Temperature Status.........54
 Signal Status.........55
Water Source Heat Pump.........53
Water Source Heat Pump Installed Screen.........32
Week Schedules
 VCM-X / RNE Controller.........16
Wetbulb Temperature.........52
Wiring
 Power/Comm Board.........6
WSHP Protection Module Screen.........22

Y
Year.........15

Z
Zone Alarm
 Delay.........62
 Offsets.........62
Zone Damper Position
 VAV/Zone Status.........65
Zone Temperature
 VAV/Zone Status.........64