SD CARD UPDATING INSTRUCTIONS

The Modular Service Tool and Modular System Manager are equipped with an SD memory card. This SD card can be removed and easily updated through a computer by downloading updates, as they become available, from our website to your computer.

In order to perform any updates, your computer needs an SD card drive or you will need to purchase an SD card adapter.

Download instructions are found in Appendix B on page 68 of this manual.
OVERVIEW & SYSTEM CONNECTION ... 5
 Modular Service Tool ... 5
 Modular System Manager SD ... 6

MODULAR SERVICE TOOL SD .. 10
 Display Screens and Data Entry Keys .. 10
 Initialization & Setting the Time & Date .. 11
 Setting the Operating Mode & Energy Timer 12
 Alarm Search & Override Search ... 13
 Schedules & Holidays ... 14
 Schedule Override .. 15

SYSTEM MANAGER SD .. 16
 Display Screens and Data Entry Keys .. 16
 Initialization & Setting the Time & Date .. 17
 Setting the Operating Mode ... 18
 Changing Passcodes .. 19
 Loop Search and System Alarm Search ... 20
 Unit Alarm Search & Override Search .. 21
 Schedules & Holidays .. 22
 Schedule Override ... 23

VAV/CAV CONTROLLER CONFIGURATION .. 24
 VAV/CAV Configuration Screen Index .. 24
 VAV/CAV Configuration Screens .. 25
 VAV/CAV Setpoint Screen Index ... 30
 VAV/CAV Setpoint Screens ... 31
 VAV/CAV Status Screen Index ... 38
 VAV/CAV Status Screens .. 39

MUA II CONTROLLER CONFIGURATION .. 42
 MUA II Configuration Screen Index .. 42
 MUA II Configuration Screens ... 43
 MUA II Setpoint Screen Index .. 45
 MUA II Setpoint Screens .. 46
 MUA II Status Screen Index .. 50
 MUA II Status Screens ... 51

VAV/ZONE CONTROLLERS & MINILINK PD CONFIGURATION 53
 VAV/Zone Configuration Screens ... 53
 VAV/Zone Setpoint Screens ... 56
 VAV/Zone Status Screens .. 60
 VAV/Zone Damper Force Modes ... 62
 MiniLink PD Configuration Screens .. 63
 MiniLink PD Status Screens ... 64

TROUBLESHOOTING .. 65
 VAV/CAV/MUA Outputs Force ... 65

APPENDIX A - SAVING, LOADING, AND COPYING SETPOINTS 66

APPENDIX B - UPDATING YOUR SD MEMORY CARD 68

APPENDIX C - UPDATING CONTROLLER & E-BUS MODULE SOFTWARE 69

INDEX ... 71
Modular Service Tool SD

The OE391-12 Modular Service Tool SD is a system operator interface that provides a direct link to enable the system operator to view the status, configure, and adjust the setpoints of the VAV/CAV, MUA II, VCM, VCM-X, VCM-X E-BUS, RNE, VCB-X, SA E-BUS or VAV/Zone Controller on the control system communications loop. However, this manual only applies to VAV/CAV, MUA II, and VAV/Zone Controllers. See note in the inside front cover for the list of manuals that pertain to other controllers.

The Modular Service Tool is housed in an attractive black plastic enclosure. The display area is covered with a clear plastic bezel for protection of the display screen. The Modular Service Tool has a 4-line-by-20-character display panel with adjustable contrast control and a 27-key membrane keypad for data selection and entry. All keypad operations are simple and straightforward, utilizing non-cryptic plain English language messages. Menu-driven programming allows for easy setup and operation without the need for specialized training. The Modular Service Tool is supplied with a programmable 4 Gigabyte SD memory card, with (4) AA 1.5 V batteries, a wall mount a DC power supply, a mini-Din communication cable, and an E-BUS communication cable. The mini-Din cable allows you to connect the Modular Service Tool to any Orion controller which has a mini-Din connector socket for programming, monitoring, and troubleshooting purposes.

The Modular Service Tool is also equipped with an EBC E-BUS port and an RS-485 three conductor terminal block port. The E-BUS port and included E-BUS cable are used for updating E-BUS Module software (described in Appendix C). The RS-485 port is used for hard-wiring to older controllers that do not have a mini-DIN connector socket.

The Modular Service Tool is designed to be hand-carried. Its rugged plastic housing provides superior protection for the electronic components housed inside. The Modular Service Tool is a top-quality service tool that will stand up to the demands of the typical job site environment for many years.

Figure 1: Modular Service Tool SD Dimensions
Modular Service Tool SD

Whether you have a Stand Alone, Interconnected, or Networked Orion Controls System, the Modular Service Tool always connects to the controller or a VAV/Zone Controller via a prefabricated cable that is supplied with the service tool. The Modular Service Tool cable is terminated on both ends with a mini-DIN connector. Attach one end to the Modular Service Tool and the other end to the mini-DIN connector on the controller. If this is an Interconnected System, all controllers that are interconnected with communications cable can be programmed from any controller on the loop. If this is a Networked System, all controllers on the entire Networked System can be programmed from one controller.

Be sure that the Modular Service Tool’s SD memory card is inserted correctly and that the Modular Service Tool has fresh batteries installed or that it is connected to a power source using the supplied power pack before attempting any programming of the controller. See Figure 2 for connection details.

Figure 2: Modular Service Tool SD
The OE392-12 Modular System Manager SD provides a direct link to enable you to view the status and adjust the setpoints of the VCM-X, VCM-X E-BUS, VCB-X, RNE, SA E-BUS, VCM, VAV/CAV, MUA II or VAV/Zone Controller on the control system communications loop. The System Manager SD is housed in a beige-colored plastic enclosure. The System Manager has a programmable 4 Gigabyte SD card and is equipped with a 4-line-by-20-character backlit display panel and a 24-key membrane keypad for data selection and entry. All keypad operations are simple and straightforward, utilizing non-cryptic plain English language messages. Menu-driven programming allows for easy setup and operation without the need for specialized training. The System Manager also has 2 integral LEDs for user notification of system alarm conditions and override initiations. Protection from unauthorized users is provided by the System Manager's integral multi-level passcode authorization programming.

On a Networked System, the Modular System Manager is connected to the communications and power loop of the system via modular cables that simply plug into the System Manager board and the Power/Comm Distribution Board. This virtually eliminates wiring errors and makes installation fast and easy. When it is to be connected to a Stand-Alone system, a cable with modular connectors on one end and stripped wire ends on the other end is provided to facilitate connecting communications and power to the Modular System Manager from the 24 VAC power source and the HVAC unit controller communication wiring terminals.

The Modular System Manager is designed for wall mounting. Mounting holes are provided to attach the Modular System Manager to a standard handy box. It is recommended that the System Manager be mounted at approximately eye level to allow for ease of programming and reading of the display. The System Manager is typically mounted in the building manager's or superintendent's office or in an equipment room. The attractive enclosure is quite suitable for mounting in any location.
Network Connection

As previously described, when you are connecting the Modular System Manager to a Networked System, the Modular System Manager is connected to the communications and power loop of the system via modular cables. These cables simply plug into the System Manager board and to any device with modular connectors on any local loop on the system. Devices with modular connectors include the Power/Comm Distribution Board, VAV/Zone controller, and MiniLink Polling Device. By using these plug-in connections, wiring errors are virtually eliminated and system installation is fast and easy. See Figure 4 below for typical connection information. See Figure 5 on page 8 for typical Power/Comm board wiring and connection information.

When the System Manager is to be connected to a Stand Alone system, a 12-foot cable with modular connectors on one end and stripped wire ends on the other end is provided for this purpose. This is used to facilitate connecting communications and power wiring to the Modular System Manager from a 24 VAC power source and to the HVAC unit controller communication wiring terminals. See Figure 6 on page 9 for wiring details. If the supplied cable wire is not long enough for your installation, a standard modular cable of the correct length can be purchased through WattMaster and one of the modular connectors can be cut off to allow for the transformer and communication terminal wiring connections. It is recommended that you do not splice the communications wire if at all possible. The transformer should be rated at 6 VA minimum power output.

Figure 4: Modular System Manager SD - Network

NOTE: For Stand-Alone Installations (No CommLink or MiniLink), All TERM Jumpers Must Be ON. For All Applications With CommLink(s) Or MiniLink(s), All Jumpers Must Be OFF.

Power/Comm Cables To Power/Comm Distribution Board, MiniLink Polling Device Or VAV/Zone Controllers On Local Loop.

All Modular Power/Comm Cables Are To Be WattMaster Part Number PCC-xx Or PCCE-xx Cables.
SYSTEM CONNECTION

Power/Comm Board Wiring

WARNING!
DO NOT GROUND THE 24V TRANSFORMER THAT IS TO BE USED WITH THE POWER/COMM BOARDS. GROUNDING OF THE TRANSFORMER WILL DAMAGE THE POWER/COMM BOARD AND ALL BOARDS CONNECTED TO IT. A SEPARATE TRANSFORMER MUST BE USED FOR EACH POWER/COMM BOARD. NO EXCEPTIONS. DO NOT CONNECT ANY OTHER DEVICES TO THE TRANSFORMER USED FOR THE POWER/COMM BOARD!

A Power/Comm Cable Can Be Used To Connect With The MiniLink PD Instead Of Using 2 Conductor Twisted Pair With Shield Cable. You Can Also Use A Power/Comm Cable To Connect With Another Power/Comm Board, A System Manager Or A VAV/Zone Controller.

If Desired, Instead Of Using A Power/Comm Cable, You Can Use 2 Conductor Twisted Pair With Shield Cable To Connect To The Power/Comm Board From The Unit Controller, MiniLink PD, Or Another Power/Comm Board.

NOTE:
Diagram Shown Is For Wiring Of Power/Comm Board When Used For Connecting Local Loop Devices Such As VAV/Zone Controllers, System Manager(s) and Other Power/Comm Boards.

Figure 5: Typical Power/Comm Board Wiring
SYSTEM CONNECTION

Stand Alone Connection

Use Supplied Modular Cable With Stripped Ends For Connection To Terminal Block And Transformer

- WHITE (T)
- DRAIN WIRE (SHLD)
- BLACK (R)
- RED (24 VAC)
- BROWN (GND)
- GREEN (GND)

Class 2 Transformer Rated For 6 VA Minimum

NOTE: If Desired A Power/Comm Board As Used With The Networked System Can Be Installed And Wired Instead Of Using The Pigtail Cable Wiring Shown Below. See The Networked System Wiring Diagram For Details.

NOTE: For Stand-Alone Installations (No CommLink or MiniLink), All TERM Jumpers Must Be ON. For All Applications With CommLink(s) Or MiniLink(s), All Jumpers Must Be OFF.

Figure 6: Modular System Manager SD - Stand Alone
MODULAR SERVICE TOOL SD

Modular Service Tool Keys

Operator Interfaces

In order to configure and program the Orion System controllers, you must have an Operator’s Interface or a personal computer with the Prism II computer front-end software installed. Three different Operator Interfaces are available for programming of the Orion Controls System—the Modular Service Tool SD, the Modular System Manager, and/or the System Manager TS II. These devices allow you to access the status and setpoints of the controllers on your communications loop. This manual describes the Modular Service Tool SD. If using the Modular System Manager or System Manager TS II, please see the Operator Interfaces Technical Guide or the System Manager TS II Technical Guide. If using Prism II, please see the Prism II Technical Guide.

The Modular Service Tool allows you to view any input or output status and change any setpoint to fine-tune the operations of the total system. All keypad operations are simple and straightforward, utilizing non-cryptic plain English messages.

Display Screens & Data Entry Keys

See the chart below for a list of the keypad descriptions and functions.

<table>
<thead>
<tr>
<th>Keypad Description</th>
<th>Key Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC</td>
<td>Use this key to exit from screens or from data entry or to return to the Main Menu from any screen in the system.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Use this key to enter a new value.</td>
</tr>
<tr>
<td>Clear</td>
<td>If a data entry mistake is made, press this key to clear the data entry field and start over. This key also turns off the power to the Service Tool when on the Main Menu Screen.</td>
</tr>
<tr>
<td>Minus</td>
<td>If a setpoint with a negative value is required, press this key for the minus sign.</td>
</tr>
<tr>
<td>DEC</td>
<td>Press this key when entering data that requires a decimal point.</td>
</tr>
<tr>
<td>← →</td>
<td>Use these keys to change values in the Configuration Screens as prompted.</td>
</tr>
<tr>
<td>↑ ↓</td>
<td>Use these keys to step backward or forward through the screens.</td>
</tr>
</tbody>
</table>

Table 1: Keypad Descriptions

Mode Selection Buttons

The Modular Service Tool is provided with “Mode Selection Buttons.” These buttons give you instant access to the specific mode desired without having to scroll through several menu screens to get there.

<table>
<thead>
<tr>
<th>Button Description</th>
<th>Mode Selection Buttons</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATUS</td>
<td>Pressing this button takes you directly to the controller “Status” screens.</td>
</tr>
<tr>
<td>SETPOINTS</td>
<td>Pressing this button takes you directly to the controller “Setpoints” screens.</td>
</tr>
<tr>
<td>SCHEDULES</td>
<td>Pressing this button takes you directly to the controller “Schedules” screens.</td>
</tr>
<tr>
<td>OVERRIDES</td>
<td>Pressing this button takes you directly to the controller “Overrides” screen. See the “Override Button” section on page 13 for a description of this function. See Note 1 below.</td>
</tr>
<tr>
<td>ALARMS</td>
<td>Pressing this button takes you directly to the controller “Alarms” screen. See the “Alarms Button” section on page 13 for a description of this function.</td>
</tr>
<tr>
<td>CONFIGURATION</td>
<td>Pressing this button takes you directly to the controller “Configuration” screens.</td>
</tr>
<tr>
<td>BALANCE-TEST</td>
<td>Pressing this button takes you directly to the controller “Balance-Test” screens.</td>
</tr>
</tbody>
</table>

Notes:

(1) The Modular Service Tool will only search the Overrides one loop at a time. You must enter the Loop number and the MiniLink PD unit ID (60).
Modular Service Tool Initialization

Modular Service Tool Initialization Screen
After connecting the Service Tool to the controller with the supplied cable, press <ON>. The Initialization Screen will appear followed by the Main Menus as shown below. If there is no SD card installed, the second screen will display, “No SD Card Connected! Powering Down!”

Although the times are displayed on the Main Screen in a standard 12-hour format, you must program them using the 24-hour military format. If you configured the Unit Controller to use its own Internal Schedules, the Occupied/Unoccupied modes are calculated on the basis of the current real time clock reading.

The two screens that follow will appear. To scroll through the fields, press <↓> or <ENTER>. In order to save a new value, you must press <ENTER>.

 initialization service tool vX.XX WattMaster Controls

1) Set Time & Date
2) Communications
NEXT) More Options
ESC) Exit Menu

3) Energy Saving
4) Update Software
NEXT) More Options
ESC) Exit Menu

NOTE: Once you press <ESC> while at the Main Menus shown above, the only way you can access it again is to cycle power.

Setting The Time & Date
The Modular Service Tool is equipped with a real time clock chip allowing it to maintain the correct time. Once you have programmed the correct time and date, the information is broadcast globally to all controllers on the entire system.

NOTE: If you are in a time zone that has daylight savings, you will need to manually adjust the time twice a year.

Programming the Time
From the Main Menu shown below, press <1> on your keypad to access the Set Time & Date Screens. (You may have to cycle power to access the Main Menu).

program time/date

Month (1-12): XX
Day (1-31): XX
Year (00-99): XX

NOTE: If you are in a time zone that has daylight savings, you will need to manually adjust the time twice a year.

Program Time/Date

Day (Sunday=0): X
Enter Hr. (0-23): XX
Enter Minutes : XX

Day - Enter the Day of the Week (0 to 6)
Sunday = 0

Hours (Hr) - Enter Hours in 24-Hour Military Format
(1700 = 5:00 PM)

Minutes - Enter the Minutes
(0 to 59)

Programming the Date
To scroll through the fields, press <↓> or <ENTER>. In order to save a new value, you must press <ENTER>.
Setting the Operating Mode

The Operating Mode is displayed on the last line of the Main Screen as shown below. The factory default setting for the Service Tool is **LS (Low Speed) Stand Alone Mode**. **LS Stand Alone Mode** is the correct configuration for the Unit Controller when in Stand Alone Mode.

If you are using this Service Tool on a communications loop and have an installed MiniLink PD or CommLink, you will need to change the setting to **LS (Low Speed) Network Mode**.

If your display indicates a different mode than the one you need, press <2> at the Main Menu shown below. You will have to cycle power to get to this screen by pressing <CLEAR> to power down and <ON> to power back on.

Press <←> or <→> to select the proper mode of operation.

When you have made your selection, press <ENTER>. The following screen will appear.

Press any key to continue. The Main Menu will appear as shown below:

Setting the Energy Saving Timer

The Modular Service Tool has a built-in timer that can be programmed to shut the Service Tool off after a specified period of time if no buttons are pressed. This is a very useful feature if you are powering the Service Tool from the internal batteries.

To set the Energy Saving Timer, press <NEXT> at the first Main Menu and <3> at the second Main Menu shown below. (You may have to cycle power to get to these screens).

The Energy Saving Screen will appear as shown below:

Enter the number of minutes you want the Service Tool to stay active before it automatically powers down and press <ENTER>. To cancel the automatic power down, enter <99> and press <ENTER>. After you have entered a number between 1 and 99 minutes, press <ESC> to exit the screen.

The Main Menu will appear again as shown below:
Modular Service Tool Alarm Search

NOTE: When you press the `<ALARMS>` button on the Modular Service Tool, it will search only the unit ID that you have entered; therefore, you must search each unit individually to access all alarms for that controller.

To search for alarms, press `<ALARMS>` while on any screen but the Main Menu. The Unit Selection Screen will be displayed.

```
Unit Selection*00*
Enter Unit ID#
Selected ID#: XXXX
```

Enter the Unit ID of the controller the Service Tool is connected to and press `<ENTER>`. Once communication is established, the *00* message will go away. Then press `<✓>`.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

One of the following screens will appear:

```
VAV/CAV/MUA V.XXX
NO ALARMS
```

```
VAV/CAV/MUA V.XXX
ALARMS PRESENT
SCROLL DOWN TO VIEW
```

Press `<✓>` to scroll through all the alarms for the controller that the Modular Service Tool is connected to.

To clear any alarms that are found, you must fix the problem indicated in the alarm. Once the problem is fixed, the alarm will clear from the screen the next time the unit is polled.

Modular Service Tool Override Search

When a space sensor with override option is used with any VAV/Zone or Unit Controller, the Modular Service Tool can determine and report any controllers that are currently operating in an override condition on a specific Loop by entering a Loop ID number and then doing a search.

NOTE: When you press the `<OVERRIDES>` button on the Modular Service Tool, it will search only the Loop number that you enter; therefore, you must search each loop individually to access all overrides.

To access the Overrides Screen, press `<OVERRIDES>` from the Modular Service Tool’s keypad. A screen will appear asking you to enter the unit ID.

```
Unit Selection*00*
Enter Unit ID#
Selected ID#: 160
```

Enter the Unit ID for the MiniLink PD (MLPD) of the loop you wish to search, and press `<ENTER>`. The MLPD is always address 60 on each loop. So the unit ID of any particular MLPD would be the loop number followed by 60. In the example above, Loop 1, address 60 has been entered. Once communication is established, the *00* message will go away. Then press `<✓>`.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

If communications are successful, one of the following screens will appear:

```
VAV/CAV/MUA V.XXX
NO OVERRIDES
```

```
VAV/CAV/MUA V.XXX
OVERRIDES PRESENT
SCROLL DOWN TO VIEW
```

After the Service Tool completes its search, it will post a message to tell you if there are overrides present. If there are overrides, press `<✓>` and all units on the loop will be listed showing ‘Override: Yes or No.’ Press `<OVERRIDES>` again to access overrides on a different loop. Enter the Unit ID of the MLPD of that loop.
The screens will step through the Start Time and then the Stop Time for each day of the week. You can quit at any point in the process by pressing <ESC>. There are two Start/Stop events available per day, so the screen will show which event is being programmed. If you need only one event, keep Event #2’s times set at ZERO.

All times are in 24-hour military format, so 5:00 PM would be entered as 1700.

If both the Start and Stop Times are ZERO, the schedule is in a continuous OFF mode. (Also, use for Remote Forced Occupied applications using the Forced Occupied Binary Input.)

If both the Start and Stop Times are 2359, the schedule is in a continuous ON mode.

NOTE: The second line displays which day of the week is currently being programmed. The day of the week automatically increments as you exit the Event #2 screen for the day and continue to the next day’s Event #1 screen.

CAUTION: The controller ships with all schedules set to zero so that the controller will not attempt to heat or cool before you have configured the system.

Press the <↓> button and then press <ENTER> to access the scheduling function you wish to view.

If you are using the internal scheduling capability of the Unit Controller, set the schedule hours and holiday periods from the menu shown above. You can also force the unit to operate continuously in occupied or unoccupied mode by selecting the Schedule Override menu item and entering the desired command.

If you are using an external contact closure to signal the occupied mode, you must access the Week Schedule Screens and set all start and stop times to zero to prevent the internal schedule from turning the equipment on when you don’t want it to operate.

The screens will step through the 14 possible holidays, one period at a time. Line 2 shows which holiday is currently being programmed. Since a holiday period can encompass more than one day, you need to program the day the holiday starts and the day the holiday ends. If your holiday only lasts one day, simply set both the Start Day and the Stop Day to the same value. Remember to combine the month and day into a single four-digit value.

EXAMPLE: 704 = July 4th (NOTE: Leading zero not required)
1225 = December 25th
Holiday Scheduling and Schedule Override

The 14 holidays all use the same Start and Stop times which you program on this screen and the next. You must enter the time in 24-hour military format, the same as a regular week schedule.

Normally, the holidays will operate in an unoccupied mode or a reduced schedule mode. There are two start/stop events available on holidays to match the standard schedule number of events.

If you want to force the unit to operate in a continuous Occupied or Unoccupied mode, select this menu item to activate the desired method. If a Schedule Override is active, all other methods of schedule control are ignored (Push-Button, Internal, and Remote).

As you can see on the last line of the display, enter <1> to run continuously in the Occupied Mode or <2> to run continuously in the Unoccupied Mode. To restore normal schedule operations, enter <0>.

This override remains in effect until canceled and does not time-out like the Output Overrides do after 10 minutes of no communications.

NOTE: Do not use the Force OFF mode in place of setting all the week schedules to ZERO if you are using a Remote Signal for your scheduling since the Override has priority over the Remote Signal.
In order to configure and program the Orion System controllers, you must have an Operator’s Interface or a personal computer with the Prism 2 computer front-end software installed. Three different Operator Interfaces are available for programming of the Orion Controls System—the Modular Service Tool SD, the Modular System Manager SD, and/or the System Manager TS II. These devices allow you to access the status and setpoints of the controllers on your communications loop. This manual describes the Modular System Manager SD. If using the Modular Service Tool SD, please see the Modular Service Tool SD Quick Start Guide. If using the System Manager TS II, please see the System Manager TS II Technical Guide. If using Prism 2, please see the Prism 2 Technical Guide.

The Modular System Manager SD allows you to view any input or output status and change any setpoint to fine-tune the operations of the total system. All keypad operations are simple and straightforward, utilizing non-cryptic plain English messages.

Display Screens & Data Entry Keys

See the chart below for a list of the keypad descriptions and functions.

<table>
<thead>
<tr>
<th>Keypad Description</th>
<th>Key Function</th>
<th>Modular System Manager SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC</td>
<td>Use this key to exit from screens or from data entry or to return to the Main Menu from any screen in the system.</td>
<td></td>
</tr>
<tr>
<td>ENTER</td>
<td>Use this key to enter a new value.</td>
<td></td>
</tr>
<tr>
<td>Clear</td>
<td>If a data entry mistake is made, press this key to clear the data entry field and start over.</td>
<td></td>
</tr>
<tr>
<td>Minus</td>
<td>If a setpoint with a negative value is required, press this key for the minus sign.</td>
<td></td>
</tr>
<tr>
<td>DEC</td>
<td>Press this key when entering data that requires a decimal point.</td>
<td></td>
</tr>
<tr>
<td>← →</td>
<td>Use these keys to change values in the Configuration Screens as prompted.</td>
<td></td>
</tr>
<tr>
<td>↑ ↓</td>
<td>Use these keys to step backward or forward through the screens.</td>
<td></td>
</tr>
</tbody>
</table>

Mode Selection Buttons

The Modular System Manager is provided with “Mode Selection Buttons.” These buttons give you instant access to the specific mode desired without having to scroll through several menu screens to get there.

<table>
<thead>
<tr>
<th>Button Description</th>
<th>Modular System Manager SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATUS</td>
<td>Pressing this button takes you directly to the controller “Status” screens.</td>
</tr>
<tr>
<td>SETPOINTS</td>
<td>Pressing this button takes you directly to the controller “Setpoints” screens and “Configuration” menu.</td>
</tr>
<tr>
<td>SCHEDULES</td>
<td>Pressing this button takes you directly to the controller “Schedules” screens.</td>
</tr>
<tr>
<td>OVERRIDES</td>
<td>Pressing this button takes you directly to the controller “Overrides” screen. See the “Override Button” section on page 21 for a description of this function. See Notes 1 & 2 below.</td>
</tr>
<tr>
<td>ALARMS</td>
<td>Pressing this button takes you directly to the controller “Alarms” screen. See the “Alarms Button” section on page 21 for a description of this function. See Notes 1 & 2 below.</td>
</tr>
</tbody>
</table>

Notes:

1. This button only functions when the system is configured for “Network Mode” or “Multiple MGRS Mode.” It will not function in “Stand Alone Mode.”

2. The “Search for Units” function must be performed on the System Manager upon initial system setup before this function will be available. See the “Network Mode & Multiple Managers Loop Search” on page 20 of this manual for complete instructions on performing a loop search.
System Manager SD Initialization

System Manager SD Initialization Screen
After connecting the System Manager to the controller with the supplied cable, press <ON>. The Initialization Screen will appear followed by the Main Menus as shown below. If there is no SD card installed, the second screen will display, “No SD Card Connected! Powering Down!”

NOTE: After exiting these screens, you can access them again by pressing <ESC> and then <ŋ> or by cycling power.

Setting The Time & Date

The System Manager SD is equipped with a real time clock chip allowing it to maintain the correct time. Once you have programmed the correct time and date, the information is broadcast globally to all controllers on the entire system.

NOTE: A Level 1 or Level 2 User can set the time and date.

NOTE: If you are in a time zone that has daylight savings, you will need to manually adjust the time twice a year.

Programming the Time

From the Main Menu shown below, press <1> on your keypad to access the Set Time & Date Screens.

Although the times are displayed on the Main Screen in a standard 12-hour format, you must program them using the 24-hour military format. If you configured the Unit Controller to use its own Internal Schedules, the Occupied/Unoccupied modes are calculated on the basis of the current real time clock reading.

The two screens that follow will appear. To scroll through the fields, press <ŋ> or <ENTER>. In order to save a new value, you must press <ENTER>.

PROGRAMMING THE TIME

Day - Enter the Day of the Week (0 to 6)
Sunday = 0

Hours (Hr) - Enter the Hour (0-23) in 24-Hour Military Format
(13 = 1:00 PM)

Minutes - Enter the Minutes
(0 to 59)

Programming the Date

To scroll through the fields, press <ŋ> or <ENTER>. In order to save a new value, you must press <ENTER>.

Month - Enter the Month (1 to 12)
Day - Enter the Day of the Month (1 to 31)
Year - Enter the current Year (0 to 99)

When you have finished programming the time and date, press <ESC> to return to the Main Menu.
Setting the Operating Mode

The Operating Mode is displayed on the last line of the Main Screen as shown below. The factory default setting for the System Manager is LS (Low Speed) Stand Alone Mode.

The System Manager must be configured for the correct mode of operation for your system. There are 5 modes of operation available for the Orion System—LS (Low Speed) Stand-Alone, HS (High Speed) Stand-Alone, LS (Low Speed) Network, HS (High Speed) Network, and LS (Low Speed) & HS (High Speed) Multiple MGRS.

If you are using this System Manager on a communications loop that doesn’t have a MiniLink PD or CommLink connected to it and you have a single System Manager on your system, then you need to operate in LS (Low Speed) Stand-Alone Mode. If you are using a VCB-X Controller or GPC-XP Controller that is set for high speed, and you don’t have a MiniLink PD or CommLink connected to the loop, then you will need to change the setting to HS (High Speed) Stand Alone Mode.

If you are using the System Manager on a communications loop and have an installed MiniLink PD or CommLink, you will need to change the setting to LS (Low Speed) Network Mode. If you are using a VCB-X Controller or GPC-XP Controller that is set for high speed, and are using a MiniLink PD or CommLink, then you will need to change the setting to HS (High Speed) Network Mode.

If you are using this System Manager on a communications loop, have a MiniLink PD or CommLink installed, and have multiple System Managers, then you need to operate in Multiple MGRS Mode.

If your display indicates a different mode than the one you need, press 2 at the Main Menu shown below. You will have to cycle power to get to this screen or by pressing <ESC> and <PREV>.

1) Set Time & Date
2) Communications
NEXT) More Options
ESC) Exit Menu

The Passcode Clearance Screen will appear as shown below.

Enter the seven digit passcode <2337377> to access the next screen.

You will then see the screen below displayed.

Press <←> or <→> if you need to change the mode of operation to LS (Low Speed) Stand-Alone, HS (High Speed) Stand-Alone, LS (Low Speed) Network, HS (High Speed) Network, LS (Low Speed) Multiple Manager or HS (High Speed) Multiple Manager and then press <ENTER> to save your selection. If you are not using Multiple Manager Mode, press <ESC> at the screen below and continue scrolling right and left.

For Multiple MGRS Mode, enter the address at which you want this particular System Manager to be set.

When multiple System Managers are used on a local loop, each must be set with a unique address different from any other device on that loop. You must perform this same operation again for each System Manager installed. If you want one of these System Managers to be able to indicate alarms and overrides for the entire system, you must select either LS or HS Network Mode on that particular System Manager.

Once you have the correct number per the display above displayed, press <ENTER>. The following screen will appear telling you that you have changed the system mode:

Press any key on the keyboard to exit this screen.
Changing Passcodes

System Manager Passcodes

Changing the mode of operation, updating software, changing schedules, and changing setpoints and configurations require passcode clearance. The screen below will appear if this action requires passcode clearance.

![Passcode Clearance Screen](image)

The System Manager has three levels of user access. All users can view Status Screens. Level 1 users are limited to changing the Time and Date and Operating Schedules. Level 2 users have complete system access. Any status or setpoint field can be read or reset from the System Manager.

These two levels of passcodes are programmable by any Level 2 user. The default Level 1 passcode is “1111” and the default Level 2 passcode is “2222.”

If you wish to change either Level 1 or Level 2 passcodes, please see the instructions that follow.

From the Main Status Screen, press <ESC> and then press <PREV>. The following screen will appear:

![Main Status Screen Menu](image)

Press <3> for Change Passcodes. The following screen will be displayed:

![Change Passcodes Screen](image)

Passcodes can only be changed by a Level 2 user. Enter the passcode and press <ENTER>. The following screen will appear:

![Enter New Passcode Screen](image)

This screen allows you to enter new Level 1 and/or Level 2 passcodes. Passcodes must always be four digits in length, so the usable range of numbers is 1000 to 9999.

CAUTION: If you change the Level 2 passcode and cannot remember what it is, you will be locked out of your system!
Network Mode & Multiple Managers

Loop Search

When the System Manager is configured for Network Mode, a loop search must initially be performed for the System Manager to recognize alarms or overrides. Also, when you have a system that has multiple System Managers and you have one of the System Managers set to (63) Network Mode for alarm and override indication, you must also perform a loop search for that System Manager. This allows the System Manager to be aware of all alarms and overrides for all local loops on the entire system.

To access the Loop Search Screen, from the Main Menu Screen, press <ESC> and then press <PREV>.

1) Set Time & Date
2) Communications
NEXT) More Options
ESC) Exit Menu

Press <→> for Next Menu. The following screen will be displayed:

3) Change Passcodes
4) Loop Search
NEXT) More Options
ESC) Exit Menu

Press <4> for Loop Search. The following screen will be displayed:

Loop Search
Current Loop = XX
Loops Found = XX
Searching

The System Manager will now proceed to search all loops to find the MiniLink PDs that are connected to the system. The screen will display the current loop being searched and the number of loops currently found.

Once the search is completed, the following screen will be displayed:

Loop Search
Finished
Loops Found = XX
Press ESC to Exit

The screen will display the number of loops found on your system. The information will be saved into the System Manager’s memory. No further loop searches will be required unless you add an additional MiniLink PD to the Network System.

System Alarm Search

The System Manager can be used to search for all active alarms on the system. You must configure the MiniLink PD to allow for “Alarm Polling” for each controller you want polled for alarms. See the MiniLink PD programming section on page 63 of this manual for setting information.

This option will alert you of the number of alarms present on individual units, but will not tell you what type of alarm are present. You will have to perform and individual unit alarm search for detailed alarm information.

To access the Alarm Search Screen, from the Main Menu Screen, press <ESC> and then press <PREV>.

1) Set Time & Date
2) Communications
NEXT) More Options
ESC) Exit Menu

Press <→> for Next Menu. The following screen will be displayed:

3) Change Passcodes
4) Loop Search
NEXT) More Options
ESC) Exit Menu

Press <4> for Loop Search. The following screen will be displayed:

5) Alarm Search
NEXT) More Options
ESC) Exit Menu

Press <5> for Alarm Search. The entire system is searched from this point. The following screen will be displayed:

Alarm Screen
SEARCHING!

Once the Alarm Search is complete, one of the following screens will display:

Alarm Screen
XX ALARMS ON UNIT XX
Unit Alarm Search

The System Manager can be used to search for all active alarms one controller at a time.

Press <ALARMS>. The Unit Selection Screen below will be displayed.

Enter the Unit ID of the controller you wish to search and press <ENTER>. Once communication is established, the *00* message will go away. Then press <↓>.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

The following screen will appear. The System Manager will search for any active alarms on the unit and one of the following screens will appear:

<table>
<thead>
<tr>
<th>CONTROLLER</th>
<th>V.XXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO ALARMS</td>
<td></td>
</tr>
</tbody>
</table>

Press <↓> to scroll through all the alarms for the controller that the Modular Service Tool is connected to.

To clear any alarms that are found, you must fix the problem indicated in the alarm. Once the problem is fixed, the alarm will clear from the screen the next time the unit is polled.

System Manager Override Search

NOTE: In order for the Override Search to work, a Loop Search must be performed first. See page 20 for details.

When a space sensor with override option is used with any VAV/Zone Controller or Unit Controller, the System Manager can determine and report any controllers that are currently operating in an override condition. This function requires that a MiniLink PD is installed on each loop where the controllers may be located. The MiniLink PD must be configured to allow for “Alarm Polling” for each controller that Override Polling Enabled is desired for this function to work. See the MiniLink PD programming section on page 63 of this manual for setting information.

To access the Space Sensor Overrides Screen, press <OVERRIDES>, The following screen will appear:

After the System Manager completes its search, it will list the first unit on the system that is currently in the override mode. Press the <↓> button to scroll through all units that are in the Override Mode.
Scheduling

You can access the Controller Scheduling Screens by pressing <SCHEDULES>. The screen below will appear because Scheduling requires passcode clearance. A Level 1 or 2 passcode can change schedules.

```
THIS ACTION REQUIRES
PASSCODE CLEARANCE
Enter Passcode: XXXX
```

If the correct passcode was entered, the Unit Selection Screen will be displayed.

```
Unit Selection*00*
Enter Unit ID#
Selected ID#: XXXX
```

Enter the Unit ID of the controller you wish to change schedules for and press <ENTER>. Once communication is established, the *00* message will go away. Then press <ESC>.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

The Unit Schedule Menu will be displayed.

```
Schedule Menu
Schedule Override
Week Schedules
Holiday Schedules
```

Press the <ESC> button until the cursor is on the desired option and then press <ENTER>.

Week Schedules

From the Unit Schedule Menu, select Week Schedules. The following two screens will appear in order:

```
Event #1
Sched
Sunday Event #1
Start Time...: XXXX
Stop Time....: XXXX
```

```
Event #2
Sched
Sunday Event #2
Start Time...: XXXX
Stop Time....: XXXX
```

If you are using the internal scheduling capability of the Controller, set the schedule hours and holiday periods from the menu shown above. You can also force the unit to operate continuously in occupied or unoccupied mode by selecting the Schedule Override menu item and entering the desired command.

If you are using an external contact closure to signal the occupied mode, you must access the Week Schedule Screens and set all start and stop times to zero to prevent the internal schedule from turning the equipment on when you don’t want it to operate.

The screens will step through the Start Time and then the Stop Time for each day of the week. You can quit at any point in the process by pressing <ESC>. There are two Start/Stop events available per day, so the screen will show which event is being programmed. If you need only one event, keep Event #2’s times set at ZERO.

All times are in 24-hour military format, so 5:00 PM would be entered as 1700.

If both the Start and Stop Times are ZERO, the schedule is in a continuous OFF mode. (Use for Remote Signal Contact.)

If both the Start and Stop Times are 2359, the schedule is in a continuous ON mode.

NOTE: The second line displays which day of the week is currently being programmed. The day of the week automatically increments as you exit the Event #2 screen for the day and continue to the next day’s Event #1 screen.

CAUTION: The controller ships with all schedules set to zero so that the controller will not attempt to heat or cool before you have configured the system.
Holiday Start/Stop Day Selection

From the Unit Schedule Menu, select Holiday Schedules. The following four screens will appear in order:

- **Holiday # 1**
 - **Start Mon/Day.: XXXX**
 - [July 4th = 704]
 - **Stop Mon/Day.: XXXX**
 - [July 5th = 705]

The screens will step through the fourteen possible holidays, one period at a time. Line 2 shows which holiday is currently being programmed. Since a holiday period can encompass more than one day, you need to program the day the holiday starts and the day the holiday ends. If your holiday only lasts one day, simply set both the Start Day and the Stop Day to the same value. Remember to combine the month and day into a single four-digit value.

EXAMPLE:
- 704 = July 4th
 - (NOTE: Leading zero not required)
- 1225 = December 25th

Holiday Start/Stop Times

The fourteen holidays all use the same Start and Stop times which you program on this screen and the next. You must enter the time in 24-hour military format, the same as a regular week schedule.

Normally, the holidays will operate in an unoccupied mode or a reduced schedule mode. There are two start/stop events available on holidays to match the standard schedule number of events.

Schedule Override

From the Unit Schedule Menu, select Schedule Override. The following screen will appear:

- **Schedule Override**
 - **Enter Override...**: X
 - [0=Auto 1=ON 2=OFF]

If you want to force the unit to operate in a continuous Occupied or Unoccupied mode, select this menu item to activate the desired method. If a Schedule Override is active, all other methods of schedule control are ignored (Push-Button, Internal, and Remote).

As you can see on the last line of the display, enter <1> to run continuously in the Occupied Mode or <2> to run continuously in the Unoccupied Mode. To restore normal schedule operations, enter <0>.

This override remains in effect until canceled and does not time-out like the Output Overrides do after 10 minutes of no communications.

NOTE: Do not use the Force OFF mode in place of setting all the week schedules to ZERO if you are using a Remote Signal for your scheduling since the Override has priority over the Remote Signal.
VAV/CAV Configuration Screen Index

The available Configuration Screens for the VAV/CAV Controller are listed on the next few pages by sequential screen number. When the Unit Controller is configured for the first time, it is best to start with screen #1 and proceed to each screen in numerical order until you have viewed all available Configuration Screens. This ensures that you have seen all the available Controller configuration possibilities and have the opportunity to change or accept the defaults for each screen.

Once the unit is configured and you decide to change one of the screen options, it is helpful to know what screen number contains the configuration you wish to change. With this in mind, the following is a list of all the VAV/CAV Configuration Screens in numerical order with a brief listing of the configuration feature available on each screen.

<table>
<thead>
<tr>
<th>Screen #</th>
<th>Description</th>
<th>Screen #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Constant Volume Mode Active</td>
<td>#10</td>
<td>Supply Air Setpoint Reset Source</td>
</tr>
<tr>
<td>#2</td>
<td>Controlling Sensor</td>
<td>#11</td>
<td>CO₂ Sensor Installed</td>
</tr>
<tr>
<td>#3</td>
<td>Economizer Control By This AHU</td>
<td>#12</td>
<td>CO₂ Sensor Maximum Reading</td>
</tr>
<tr>
<td>#4</td>
<td>Fan Cycle Mode Needed</td>
<td>#13</td>
<td>Air to Air Heat Pump Control</td>
</tr>
<tr>
<td>#5</td>
<td>Proof of Flow Switch Installed</td>
<td>#14</td>
<td>Broadcast Time Clock To Loop Units</td>
</tr>
<tr>
<td>#6</td>
<td>OA Humidity Sensor Installed</td>
<td>#15</td>
<td>Broadcast Outside Temperature</td>
</tr>
<tr>
<td>#7</td>
<td>Dehumidification Installed</td>
<td>#16</td>
<td>Broadcast Supply Temperature</td>
</tr>
<tr>
<td>#8</td>
<td>Relief Pressure Control Installed</td>
<td>#17</td>
<td>Broadcast Humidity Reading</td>
</tr>
<tr>
<td>#9</td>
<td>Relief Pressure Control Reverse Acting</td>
<td>#18</td>
<td>Broadcast Internal Schedule</td>
</tr>
<tr>
<td>#10</td>
<td>Supply Air Setpoint Reset Source</td>
<td>#19</td>
<td>Broadcast Status Fan & Heat</td>
</tr>
<tr>
<td>#11</td>
<td>CO₂ Sensor Installed</td>
<td>#20</td>
<td>Broadcast VAV Boxes Force To Max</td>
</tr>
<tr>
<td>#12</td>
<td>CO₂ Sensor Maximum Reading</td>
<td>#21</td>
<td>Broadcast VAV Boxes Force To Fixed</td>
</tr>
<tr>
<td>#13</td>
<td>Air to Air Heat Pump Control</td>
<td>#22-41</td>
<td>Relay Configuration Relays 2-21</td>
</tr>
<tr>
<td>#14</td>
<td>Broadcast Time Clock To Loop Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#15</td>
<td>Broadcast Outside Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#16</td>
<td>Broadcast Supply Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#17</td>
<td>Broadcast Humidity Reading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#18</td>
<td>Broadcast Internal Schedule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#19</td>
<td>Broadcast Status Fan & Heat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#20</td>
<td>Broadcast VAV Boxes Force To Max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#21</td>
<td>Broadcast VAV Boxes Force To Fixed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screens 22-41</td>
<td>Relay Configuration Relays 2-21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuration Screens

In order to correctly set up the Unit Controller, you must first configure several parameters in regard to the type of HVAC unit and system you have installed. Most of these values and operating parameters are only set once at the initial system setup and are never changed.

Modular Service Tool Instructions

No matter what screen or menu you’re in, press <CONFIGURATION>. The Unit Selection Screen will appear, shown below, requesting that you enter the unit ID number.

![Unit Selection Screen](image)

Enter the correct unit ID number of the Unit Controller you want to configure and then press <ENTER>. Once communication is established, the *00* message will go away. Then press <↓>. You will then see Unit Configuration Screen #1. Press <ENTER> to save entered data and press <↓> to scroll through the screens.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

System Manager SD Instructions

From any Main screen, press <SETPOINTS>. The screen below will appear because this option requires passcode clearance. Only a Level 2 passcode can change setpoints.

![System Manager SD Instructions Screen](image)

If the correct passcode was entered, the Unit Selection Screen will be displayed.

![Unit Selection Screen](image)

Enter the Unit ID of the controller you wish to change schedules for and press <ENTER>. Once communication is established, the *00* message will go away. Then press <↓>.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

The following screen will be displayed:

![Configuration Screen #1 - Constant Volume Mode Active](image)

This HVAC unit can be configured to operate as a Constant Volume or VAV unit. The Constant Volume Mode does not provide Static Pressure Control. You can install a Duct Pressure Sensor on a Constant Volume unit and only monitor the Static Pressure. This is the only mode that supports dehumidification. Default is No.

![Configuration Screen #2 - Controlling Sensor](image)

The third line displays which sensor has been selected as the Controlling Temperature for the VAV/CAV Controller. Default is SUPPLY AIR.

Available selections are as follows:

SUPPLY AIR
Supply Air Sensor
(Occupied Cooling with Morning Warmup)

OUTDOOR AIR
Outdoor Air Temperature Sensor
(Occupied Cool, Heat & Vent)

SPACE TEMPERATURE
Space Temperature Sensor
(Occupied & Unoccupied Cool, Heat & Vent)

RETURN AIR
Return Air Sensor (Occupied Cool, Heat & Vent)

LOCAL ANALOG VALUE
Local Analog Value
If your AHU has Outdoor Air Dampers, it is recommended that you allow the VAV/CAV Controller to modulate these dampers in the Economizer Mode so that it can be used as the first stage of cooling. If you don’t have Outdoor Air Dampers, or you decide to let a separate controller maintain these dampers, select No for this option. Default is Yes.

You can monitor a wet contact closure on the first binary input #1 on the 4 Binary Input Expansion Board, and whenever it closes, the Gas Reheat relay will be activated. This assumes you are in Cooling Mode. The Gas Reheat does not activate if the VAV/CAV Controller is in the Heating Mode. The option is only available on units that are configured for Constant Volume Mode. If you are controlling Static Pressure (VAV Mode), then this option is ignored. Default is No.

Select YES if your system requires Fan Cycle Control. Default is No.

If you need Proof of Airflow before allowing any Heating or Cooling stages to operate, install a differential pressure switch with a contact closure that is connected to analog input #7 and select this option. If this option is not selected, the VAV/CAV Controller assumes there is adequate airflow any time the fan is running and ignores this signal. Default is No.

Select Yes if Reverse Acting Building Pressure Control is needed. Reverse Acting Building Pressure Control can either be On/Off or Modulating Control. Modulating Control is normally used for this configuration. On a decrease in Building Pressure, below the Building Static Pressure Setpoint, the Outdoor Air Damper will modulate open to increase pressure. Default is No.

If your Economizer Control requires the use of the Wetbulb Temperature to enable or disable it, you must install a Humidity Sensor on analog input #5 and select this option. If you require the Remote Signal to determine the Occupied Mode of operation, you will need to move the Remote Signal to analog input #2 on the Analog Input Expansion Board. Default is No.
VAV/CAV CONTROLLER CONFIGURATION

VAV/CAV Configuration Screens

Configuration Screen #10 - Supply Air Setpoint Reset Source

VAV/CAV Cnfg ID 0001
Reset SAT Stpt Using
Input Voltage Signal
Use < Or > To Change

Select the desired method of resetting the Heating/Cooling Supply Air Setpoint. Default is Input Voltage Signal. Available selections are:

- Input Voltage Signal
- Outdoor Air Sensor
- Space Sensor
- Fan VFD Percentage
- Local Analog Value
- Return Temp Sensor

Configuration Screen #11 - Type of CO₂ Sensor Installed

VAV/CAV Cnfg ID 0001
CO₂ Sensor Installed
Sensor Type: NONE
Use < Or > To Change

You can install a CO₂ Sensor on this HVAC unit to monitor the Carbon Dioxide levels and/or to provide for Indoor Air Quality (IAQ) control. If you only want to monitor the level, enter the same Maximum Economizer Position that you set for the Minimum Position and it will not be reset as the CO₂ level increases. If you do want IAQ control, set the desired Maximum Economizer Position to reset up to during high levels of CO₂. The VAV/CAV Controller needs to know what type of CO₂ Sensor signal output is being provided. Select either VDC (0-10) or mA (4-20) as the CO₂ Sensor signal. Select NONE if no CO₂ sensor is used. Default is NONE.

Configuration Screen #12 - CO₂ Sensor Maximum Reading

VAV/CAV Cnfg ID 0001
CO₂ Sensor Maximum
Reading: 2000ppm
Enter 0 If No Sensor

The VAV/CAV Controller needs to know the CO₂ Sensor scaling for proper reading of the CO₂ Sensor output. The Standard CO₂ Sensor should be scaled to 2000 PPM. Enter <0> if no CO₂ Sensor is being used. Default is 2000ppm.

Configuration Screen #13 - Air to Air Heat Pump Control

VAV/CAV Cnfg ID 0001
Air to Air Heat Pump Control: No
Use < Or > To Change

The VAV/CAV Controller can be configured to operate as an Air To Air Heat Pump Controller. If you make this selection, the same relays are used to stage the compressors in both the Heating and Cooling Modes. The only difference is that a separate Reversing Valve relay will activate in the Heating Mode to enable Heating to occur. You must configure at least one relay for the reversing valve.

You can also configure for an Auxiliary Heat relay that will activate whenever the Supply Air drops below the Supply Setpoint by 5°F to provide Heat when the Outdoor Air is too cold for the Heating Mode to operate correctly. Default is No.

Configuration Screen #14 - Broadcast Time Clock to All Loop Units

VAV/CAV Cnfg ID 0001
Broadcast Time Clock To Loop Units: No
Use < Or > To Change

This setting enables the VAV/CAV Controller to send its real time clock information to all controllers on the local loop. This must be used when connecting VAV/Zone Controllers on the local loop, but can be used to synchronize clock time in all controllers on the local loop.

Configuration Screen #15 - Broadcast Outdoor Temperature

VAV/CAV Cnfg ID 0001
Broadcast Outside Temperature: No
Use < Or > To Change

This setting enables the VAV/CAV Controller to send its Outdoor Air Temperature reading to all other controllers on the entire system. It is specifically used when more than one HVAC unit is installed and only one Outdoor Air Sensor is used to supply its signal to all controllers. Default is No.
VAV/CAV CONTROLLER CONFIGURATION

VAV/CAV Configuration Screens

Configuration Screen #16 - Broadcast Supply Temperature

VAV/CAV Cnfg ID 0001

Broadcast Supply Temperature: No
Use < Or > To Change

This setting enables the VAV/CAV Controller to send its Supply Air Temperature reading to all controllers that do not have their own sensor on the local loop. This is standard for VAV/Zone applications. Default is No.

Configuration Screen #17 - Broadcast Humidity Reading

VAV/CAV Cnfg ID 0001

Broadcast Humidity Reading: No
Use < Or > To Change

This setting enables the VAV/CAV Controller to send its Relative Humidity reading to all other controllers on the entire system. It is specifically used when more than one HVAC unit is installed, and only one Relative Humidity Sensor is used to supply its signal to all controllers. Default is No.

Configuration Screen #18 - Broadcast Internal Schedule

VAV/CAV Cnfg ID 0001

Broadcast Internal Schedule: No
Use < Or > To Change

This setting enables the VAV/CAV Controller to send its Occupied and Unoccupied status to the VAV/Zone Controllers on the local loop. Default is No.

Configuration Screen #19 - Broadcast Fan & Heat Status

VAV/CAV Cnfg ID 0001

Broadcast Status Fan & Heat: No
Use < Or > To Change

This setting enables the VAV/CAV Controller to send status information on whether the HVAC unit Main Fan is running or if it is in Heat Mode to the VAV/Zone Controllers on the local loop. This enable is required when VAV/Zone Controllers have heating stages or are fan-powered.

Configuration Screen #20 - Broadcast VAV Boxes Force to Max

VAV/CAV Cnfg ID 0001

Broadcast VAV Boxes Force To Max: No
Use < Or > To Change

When YES is selected, all VAV/Zone Controllers connected to this VAV/CAV Controller will be forced to their “Maximum Airflow” position during the Morning Warmup Mode of operation. Select No if you do not want this to occur. See VAV/Zone Controller Setpoint Screen #6 on page 57 for setting the Maximum Airflow position. Default is No.

Configuration Screen #21 - Broadcast VAV Boxes Force to Fixed

VAV/CAV Cnfg ID 0001

Broadcast VAV Boxes Force To Fixed: No
Use < Or > To Change

When Yes is selected, all VAV/Zone Controllers connected to this VAV/CAV Controller will be forced to their “Fixed Airflow” position during the Morning Warmup Mode of operation. Select NO if you do not want this to occur. See VAV/Zone Controller Setpoint Screen #10 on page 58 for setting the Fixed Airflow position. Default is No.

The 20 Relay screens allow you to set the 4 relays on the VAV/CAV Controller and up to 16 additional relays when relay expansion board(s) are used.

The first relay on the VAV/CAV Controller is always reserved for the Supply Fan. Relays #2 through #21 can be individually configured by pressing the left and right arrow keys to change the relay to the desired configuration. This should be enough to handle up to 8 stages of Heating and 8 stages of Cooling on large HVAC units. Only the Heating and Cooling relays can be configured with multiple outputs. If any other option is selected more than once, it will simply activate redundant relays, but no multiple staging will occur.

Available options are:

- Not Used
- Pre-Heater
- Heat Stage
- Reserved
- Cool Stage
- Alarm Relay
- Warmup Mode
- Override
- Rev Valve
- Occupied
- Gas Re-Heat
- Economizer
- Exhaust Fan

The VAV/CAV Controller does not require you to start configuring your Heating or Cooling Stages first nor does it require that you utilize consecutive relays until all Heating or Cooling Stages have been defined.

This method allows the greatest flexibility in the field, but it requires close attention to the wiring of the Heating and Cooling Stages to prevent incorrect and possibly harmful operation.

The controller assumes there will only be one relay configured for Morning Warm-Up Mode although it doesn’t prevent multiple relays from being selected. Since this relay is used to send a signal to VAV boxes to drive to their maximum airflow position, redundant relays are not required.
VAV/CAV CONTROLLER SETPOINTS

VAV/CAV Setpoint Screen Index

Setpoint Screen Index

The available Setpoint Screens for the VAV/CAV Controller are listed on the next few pages by sequential screen number. When each VAV/CAV Controller is configured for the first time, it is best to start with screen #1 and proceed to each Setpoint Screen in numerical order until you have viewed all available Setpoint Screens. This ensures that you have seen all of the available VAV/CAV Controller Setpoint possibilities and have the opportunity to change or accept the defaults for each screen. Once the unit Setpoints are configured and you decide to change one of the screen options, it is helpful to know what screen number contains the configuration you wish to change. With this in mind, the following is a list of all the VAV/CAV Setpoint Screens in numerical order with a brief listing of the Setpoint feature available on each screen:

Screen #1 HVAC Mode Setpoints
Screen #2 Unoccupied Setbacks
Screen #3 HVAC Mode Select Deadband
Screen #4 SAT Setpoints—Cooling & Rest Offset
Screen #5 SAT Setpoints—Heating & Reset Limit
Screen #6 Both Heating/Cooling Supply Control
Use Deadband Of
Screen #7 Morning Warmup Setup—Target Temp
and Max Length
Screen #8 Outdoor Air Lockouts—Cooling & Heating
Screen #9 All Cooling Cuts Off If Supply Air Temp
Drops Below
Screen #10 All Heating Cuts Off If Supply Air Temp
Exceeds
Screen #11 Heating Stages Off If Supply Fan VFD
is Below
Screen #12 Pre-Heat Output ON Continuous Below
OAT Level
Screen #13 Economizer Setpoints OAT/WB Enable
Screen #14 Economizer Setpoints Min Position &
Control Rate
Screen #15 Static Setpoint, Deadband & Control Rate
Screen #16 Relief Setpoint and Deadband
Screen #17 Set SAT Cool Reset
Screen #18 Set SAT Heat Reset
Screen #19 Start Fan Delay Timer
Screen #20 Mechanical Heat Cool Failures Occur
After No Change In
Screen #21 AHU Scheduled By Schedule Number
Screen #22 Maximum Economizer Position if High
CO₂ Level Occurs
Screen #23 CO₂ Protection Limit
Screen #24 Push Button Override Duration
Screen #25 Slide Offset Sensor Setpoint
Screen #26 Air to Air Heat Pump Delay Before Using
Aux Heating
Screen #27-30 Cooling and Heating Stage Delays
Screen #31 Sensor Calibrations For SPC, SAT & RAT
Screen #32 Sensor Calibration For OAT
Setpoints - General Procedures

Modular Service Tool Instructions

From any menu screen, press **SETPOINTS**. The Unit Selection Screen, shown below, will appear requesting that you enter the unit ID number.

![Unit Selection Screen](image)

Enter the correct unit ID number of the Controller you want to change Setpoints for and press **ENTER**. Once communication is established, the *00* message will go away. Then press **<**. You will then see Setpoint Screen #1. Press **ENTER** to save entered data and press **<** to scroll through the screens.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

System Manager SD Instructions

From any Main screen, press **SETPOINTS**. The screen below will appear because this option requires passcode clearance. Only a Level 2 passcode can change setpoints.

![Passcode Clearance Screen](image)

If the correct passcode was entered, the Unit Selection Screen will be displayed.

![Unit Selection Screen](image)

Enter the Unit ID of the controller you wish to change schedules for and press **ENTER**. Once communication is established, the *00* message will go away. Then press **<**.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

The following screen will be displayed:

![Setpoint Screen #1](image)

Scroll to the ‘Change Setpoints’ option and press **ENTER**. This will take you to the first Setpoints Screen shown below.

![Setpoint Screen #2](image)

If the controller is configured for Space Temperature, Return Air Temperature, or Return Air with Day Heating control, the unit attempts to maintain these Cooling and Heating Setpoints.

If you are using a remote BAS to activate the Heating or Cooling Modes with contact closures on the 4 Binary Input Board, set these two setpoints to zero and select the Supply Air Temperature Sensor as the controlling sensor.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC Mode Setpoints Cooling</td>
<td>0°F</td>
<td>74°F</td>
<td>90°F</td>
</tr>
<tr>
<td>HVAC Mode Setpoints Heating</td>
<td>0°F</td>
<td>65°F</td>
<td>90°F</td>
</tr>
</tbody>
</table>

During the Unoccupied Mode these values will be added to the Cooling Setpoint and subtracted from the Heating Setpoint. These settings are only used if the controller has been configured to utilize a Space Temperature Sensor.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unoccupied Cooling Setup</td>
<td>0°F</td>
<td>10°F</td>
<td>30°F</td>
</tr>
<tr>
<td>Unoccupied Heating Setback</td>
<td>0°F</td>
<td>0°F</td>
<td>-30°F</td>
</tr>
</tbody>
</table>
Setpoint Screen #3 - HVAC Mode Select

The HVAC Mode Select Deadband is the amount of error from setpoint required to activate the Heating or Cooling Mode of operation.
This assumes the Return Air or Space Temperature are the controlling sensors. If the Supply Air Temperature Sensor is the controlling sensor, then this setpoint is not used.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC Mode Select Deadband</td>
<td>0.1°F</td>
<td>1.0°F</td>
<td>10.0°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #4 - SAT Cooling Setpoint & Reset Offset

If no Reset of the Supply Air Temperature (SAT) Setpoint will be used, then set the Cooling SAT Setpoint here, and leave the Reset Offset at 0. If SAT Reset will be used, enter a Reset Offset value that will be added to the Cooling Setpoint to create the upper limit for the Reset function. Reset is always upward from the SAT Cooling Setpoint (lowest value) to the SAT Cooling Setpoint plus Offset (highest value). This Cooling Reset configuration will be completed on Setpoint Screen #17 on page 34.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT Cooling Setpoint</td>
<td>40°F</td>
<td>55°F</td>
<td>70°F</td>
</tr>
<tr>
<td>Cooling Reset Offset</td>
<td>0°F</td>
<td>0°F</td>
<td>20°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #5 - SAT Heating & Reset Limit Setpoints

If no Reset of the Supply Air Temperature (SAT) Setpoint will be used, then set the Heating SAT Setpoint here, and set the Reset Limit to the same value. If SAT Reset will be used, set the Heating Setpoint as the lowest Supply Air Setpoint Temperature desired, and set the Reset Limit as the highest SAT desired. Reset is always upward from the Heating Setpoint to the Reset Limit. This Heating Reset configuration will be completed on Setpoint Screen #18 on page 34.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT Heating Spt</td>
<td>60°F</td>
<td>140°F</td>
<td>200°F</td>
</tr>
<tr>
<td>Reset Limit Spt</td>
<td>60°F</td>
<td>140°F</td>
<td>200°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #6 - Heating/Cooling Supply Control Use Deadband Of

All Heating and Cooling stages are staged up and down as the Supply Air rises above or falls below the Supply Setpoint by an amount equal to the number of stages divided into the Deadband Setpoint.

If you have 2 stages and a 1°F deadband, the staging begins at 0.5°F above the setpoint for Stage 1 and 1°F above the setpoint for Stage 2.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadband Setpoint</td>
<td>0°F</td>
<td>1°F</td>
<td>20°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #7 - Morning Warm Up Setup

If you need a Morning Warm-Up period on your HVAC unit, enter the Target Temperature you want the Return Air Temperature to achieve and the Max Length of time you want to spend in Warm-Up Mode trying to achieve the Target Temperature. If you don’t need Morning Warm-Up, simply ignore the Target Temperature Setpoint and enter a ‘0’ for the Max Length value.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Temperature</td>
<td>50°F</td>
<td>72°F</td>
<td>90°F</td>
</tr>
<tr>
<td>Max Length</td>
<td>0 Min</td>
<td>60 Min</td>
<td>240 Min</td>
</tr>
</tbody>
</table>

Setpoint Screen #8 - Outdoor Air Lockouts

The Unit Controller will Lockout Mechanical Heating or Cooling when the Outdoor Air (OA) Temperature is above or below these setpoints. On Heat Pump units, Compressor Cooling and Heating can only operate if the OA Temperature is above the Outdoor Air Cooling Lockouts.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Air Lockouts Cooling</td>
<td>50°F</td>
<td>75°F</td>
<td></td>
</tr>
<tr>
<td>Heating</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If the Outdoor Air Temperature drops below the Cooling Lockout setpoint by 1°F, the DX cooling will be locked out until the Outdoor Air Temperature rises 1°F back above the Lockout Setpoint. The same 1°F deadband applies to the Heat Lockout Setpoint except the Outdoor Air locks out the Heating when it is above the lockout instead of below the lockout.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA Lockouts Cooling</td>
<td>-30°F</td>
<td>50°F</td>
<td>80°F</td>
</tr>
<tr>
<td>OA Lockouts Heating</td>
<td>50°F</td>
<td>75°F</td>
<td>90°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #9 - Low Cutoff Temperature

If the Supply Fan VFD drops below this value, the Heat will stage off. The Supply Fan VFD will not be allowed to drop below this value while the unit is in Heating Mode unless the static pressure rises 0.5” above the static setpoint. See the VAV/CAV Controller Technical Guide for detailed information on the Low Supply Air Temperature Cutoff sequence of operation.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lo SAT Cutoff</td>
<td>30°F</td>
<td>40°F</td>
<td>60°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #10 - High Cutoff Temperature

If the Supply Air Temperature ever exceeds this value, all Heating stages are immediately cutoff, regardless of run time. See the VAV/CAV Controller Technical Guide for detailed information on the High Supply Air Temperature Cutoff sequence of operation.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hi SAT Cutoff</td>
<td>60°F</td>
<td>170°F</td>
<td>250°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #11 - Supply Fan VFD Percentage

If the Supply Fan VFD drops below this value, the Heat will stage off. The Supply Fan VFD will not be allowed to drop below this value while the unit is in Heating Mode unless the Static Pressure rises 0.5” above the Static Setpoint.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below Setpoint</td>
<td>0%</td>
<td>30%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Setpoint Screen #12 - Low Ambient Protection

If your air handler has at least one Heating stage and you require a Low Ambient Protection or Preheating of the air stream, you can enter a Supply Air Temperature value that causes one stage of Heating to come on and remain on continuous if the Outdoor Air Temperature drops below this level. If you don’t want this protection, do not configure any relays for this function.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Ambient Level</td>
<td>-50°F</td>
<td>0°F</td>
<td>70°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #13 - Economizer OAT/WB Enable

If an Outdoor Air Humidity Sensor is not connected to the Unit Controller and the Outdoor Air Temperature falls below this Setpoint, the Economizer can be used for Free Cooling. If an Outdoor Air Humidity Sensor is connected to the controller, then a Wetbulb Temperature will be calculated and used instead of the Outdoor Air Drybulb Temperature to determine when Free Cooling can be used.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economizer Setpoints OAT/WB Enable</td>
<td>-30°F</td>
<td>55°F</td>
<td>80°F</td>
</tr>
</tbody>
</table>
Setpoint Screen #14 - Economizer Minimum Position & Control Rate

The Economizer (OA Damper) Min Position Setpoint is maintained during the Occupied Mode even if the Economizer is disabled due to the OA Temperature or Wetbulb Temperature being above the Economizer Enable Setpoint. The Control Rate Setpoint allows you to adjust the Economizer to modulate the OA Damper Actuator faster or slower as desired. The Control Rate Setpoint range is 10-99. Larger numbers make the Economizer Outdoor Air Damper Actuator modulate faster; smaller numbers make the Outdoor Air Damper Actuator modulate slower.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economizer Min Position</td>
<td>0%</td>
<td>10%</td>
<td>100%</td>
</tr>
<tr>
<td>Economizer Control Rate</td>
<td>10</td>
<td>90</td>
<td>99</td>
</tr>
</tbody>
</table>

Setpoint Screen #15 - Static Setpoint, Deadband & Control Rate

For VAV units, a Supply Fan VFD or Bypass Damper Actuator is used to maintain the Duct Static Pressure Setpoint. The Static Pressure Output Signal varies to control the Static Pressure Setpoint. If the Duct Static Pressure is above the Static Setpoint plus the Deadband, the Static Pressure Output Signal will be reduced at every Control Rate interval. If the Static Pressure is below the Static Setpoint minus the Deadband, the Output signal will be increased at every Control Rate interval.

The Duct Static Pressure Control Output Signal is a non-configurable Direct Acting Signal (0-10 VDC). This can be used to directly connect to a Supply Fan VFD without any modifications.

When you are using a Bypass Damper Actuator to control the Duct Static Pressure, you must set up the Bypass Damper Actuator or the Bypass Damper so that it is Reverse Acting in operation. The Output Signal increases (closes Bypass Damper) if the Duct Static Pressure is below the Duct Static Pressure Setpoint by the Deadband amount and the Output Signal decreases (opens Bypass Damper) if the Static Pressure is above the Setpoint by the Deadband amount.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Spt</td>
<td>0.10" WG</td>
<td>0.50" WG</td>
<td>3.0" WG</td>
</tr>
<tr>
<td>Deadband</td>
<td>0.01" WG</td>
<td>0.10" WG</td>
<td>1.0" WG</td>
</tr>
<tr>
<td>Control Rate</td>
<td>1 Sec</td>
<td>10 Sec</td>
<td>30 Sec</td>
</tr>
</tbody>
</table>

Setpoint Screen #16 - Building Pressure Setpoint & Deadband

The VAV/CAV Controller uses the Relief Fan VFD signal to maintain the Relief Setpoint value plus or minus the Deadband value. Adjustments to the signal are made at a rate equal to the Control Rate Setpoint on the previous Static Pressure screen. If you don’t require Relief Pressure control, simply ignore these settings.

<table>
<thead>
<tr>
<th>Description</th>
<th>Min.</th>
<th>Default</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relief Setpoint</td>
<td>-0.20” WG</td>
<td>0.10” WG</td>
<td>+0.20” WG</td>
</tr>
<tr>
<td>Deadband</td>
<td>0.01” WG</td>
<td>0.02” WG</td>
<td>0.10” WG</td>
</tr>
</tbody>
</table>

Setpoint Screens #17 & 18 - SAT Cool Reset & SAT High Reset

These screens allow you to set values for resetting the Supply Air Temperature (SAT) when the unit is in Cooling and/or Heating Mode. You can configure the HVAC unit to reset the SAT Setpoint based on the Outdoor Air Temperature, Input Voltage Signal, Space Temperature, Return Air Temperature, Fan VFD Percentage, or a Local Analog Value. On these screens you will only enter the values in the left hand column. These are the Reset Source values that will cause the SAT to proportionally reset from its minimum to its maximum value. The values in the right hand column are set in Setpoint Screens #4 & #5 on page 32 and automatically imported into this screen. See the examples below to set up the reset ranges.

Example: Space Temperature Setpoints are 74°F COOL and 72°F HEAT

Space Temperature Cool Reset Example:

<table>
<thead>
<tr>
<th>Hi Reset</th>
<th>Lo Reset</th>
<th>SAT Setpoint (Spt)</th>
<th>SAT Setpoint (Rst)</th>
</tr>
</thead>
<tbody>
<tr>
<td>76°F</td>
<td>74°F</td>
<td>55°F</td>
<td>65°F</td>
</tr>
</tbody>
</table>

Space Temperature Heat Reset Example:

<table>
<thead>
<tr>
<th>Hi Reset</th>
<th>Lo Reset</th>
<th>SAT Setpoint (Spt)</th>
<th>SAT Setpoint (Rst)</th>
</tr>
</thead>
<tbody>
<tr>
<td>72°F</td>
<td>70°F</td>
<td>90°F</td>
<td>120°F</td>
</tr>
</tbody>
</table>
VAV/CAV Controller Setpoints

VAV/CAV Setpoint Screens

Setpoint Screen #21 - HVAC Schedule

VAV/CAV Spts ID 0001
AHU Schedule By
Schedule Number: 0
0=AHU 1-7=Scheduler

Normally, the AHU will use its own internal time clock and week schedules to set the Occupied Mode of operation. If you have several air handlers, you can connect an external scheduling device to the communications loop and program the air handler for the desired schedule to follow. If the AHU is using its internal schedule, enter <0> for Internal.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule Number</td>
<td></td>
<td>0</td>
<td>1 to 7</td>
</tr>
</tbody>
</table>

Setpoint Screen #22 - Economizer Maximum Position if High CO₂ Level

VAV/CAV Spts ID 0001
Maximum Economizer Position if High CO₂ Level Occurs.: 100%

If you have configured the air handler to read a CO₂ Sensor, it will override the Minimum Economizer Position up to this position if the CO₂ level rises above its setpoint by the adjustable Reset Range amount. See Setpoint Screen #23.

NOTE: The Minimum Position is determined by the user-adjustable Min Position Setpoint on Setpoint Screen #14 on page 34.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Economizer Position</td>
<td></td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Economist Minimum Position</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setpoint Screen #23 - CO₂ Protection Limit

VAV/CAV Spts ID 0001
CO₂ Protection Limit
Max Level: 900 PPM
Reset Range: 100 PPM

If you configure the air handler to read a CO₂ Sensor, the Max Level is the point at which the Economist Minimum Position starts to reset upward. As the CO₂ level rises above the Max Level by the Reset Range amount, the Economist will have reset its Minimum Position proportionally up to the previously defined Economist Maximum Position in High CO₂.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ Protection Limit Max Level</td>
<td>0 PPM</td>
<td>900 PPM</td>
<td>5000 PPM</td>
</tr>
<tr>
<td>CO₂ Protection Limit Reset Range</td>
<td>0 PPM</td>
<td>100 PPM</td>
<td>1000 PPM</td>
</tr>
</tbody>
</table>
Setpoint Screen #24 - Push-Button Override Duration

If the unit controller has a Space Temperature Sensor installed and it has the Override Button option, the HVAC unit will initiate Occupied Mode any time the Override Button is pressed and held for less than 3 seconds. The Push-Button Override Duration Setpoint allows you to adjust the amount of time the Override will remain in effect when the Override Button is pressed. To cancel the Override before the Override Duration time period expires, press the Override Button for 5 to 10 seconds.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push-Button Override Duration</td>
<td>0.0 Hr</td>
<td>2.0 Hr</td>
<td>8.0 Hr</td>
</tr>
</tbody>
</table>

Setpoint Screen #25 - HVAC Mode Sensor Slide Offset

If the unit controller has a Space Temperature Sensor with the Slide Adjust option installed, the HVAC Mode Enable Heating and Cooling Setpoints can be offset by the HVAC Mode Sensor Slide Offset Setpoint value. When the Slide Adjust bar is in the middle, no offset will occur. If the Slide Adjust bar is moved all the way to the top of the Sensor, the Heating and Cooling Setpoints will be raised by the Setpoint value you have entered. If the Slide Adjust bar is moved all the way to the bottom of the Sensor, the Heating and Cooling Setpoints will be lowered by the Setpoint value you have entered.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC Mode Sensor Slide Offset</td>
<td>0°F</td>
<td>0°F</td>
<td>10°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #26 - Heat Pump Auxiliary Heating Delay

If you configured this air handler to control as an Air to Air Heat Pump unit and you have Auxiliary Heating on this unit, you can adjust how long the unit uses the compressor to attempt to provide Heating before it activates the Aux Heat to supplement the compressor.

NOTE: On Air to Air Heat Pumps, you must configure one of the relays to be used as the Reversing Valve. This output is active any time the unit is in the Heating Mode and this mode is the only time the Aux Heat will be activated, if needed.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pump Auxiliary Heating Delay</td>
<td>0 Min</td>
<td>3 Min</td>
<td>30 Min</td>
</tr>
</tbody>
</table>

Setpoint Screen #27 - Internal Schedule Optimal Start Soak Multiplier

If you have decided to use the AHU internal schedule and have entered a ‘0’ on Setpoint Screen #21 on page 35 for the schedule number, you can enable this internal schedule to perform an Optimal Start. This feature requires a Space Sensor input for the Optimal Start calculations. If you don’t require optimal start or you are not using a Space Sensor, enter a ‘0’ for this multiplier. If you do have a Space Sensor and want Optimal Start, enter a value greater than ‘1.0’ to enable the calculations. The Soak Multiplier is used to increase the normal Optimal Start calculation whenever the building has been in the Unoccupied Mode for 24 consecutive hours or more. If you used a 1.5 multiplier and the Optimal Start had calculated a 30 minute pre-start, the Soak Multiplier would add an additional 15 minutes to the pre-start for a total of 45 minutes (1.5 x 30). The system would then start 45 minutes earlier than the normally scheduled Occupied Mode schedule to bring the Space Temperature under control.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Schedule Optimal Start Soak Multiplier</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Configuration Screen #28-#31 - Cool/Heat Stage Delays

- VAV/CAV Spts ID 0001
 - Cooling Stage Delays
 - Staging Up...: 3 Min
 - Staging Down: 1 Min

- VAV/CAV Spts ID 0001
 - Heating Stage Delays
 - Staging Up...: 3 Min
 - Staging Down: 1 Min

Both the Heating Stages and the DX Cooling Stages utilize Staging Up and Down Delay Periods between stages and Minimum Run Times and Off Times.

Both modes have their own set of Staging and Run Delay times. The Heating timer screens look exactly the same as the Cooling except they reference the Heating instead of Cooling.

See the VAV/CAV Controller Technical Guide for information on how these Delays and Run Times are used.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Stage Up</td>
<td>3 Min</td>
<td>3 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Cooling Stage Down</td>
<td>1 Min</td>
<td>1 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Cooling Min Run Time</td>
<td>5 Min</td>
<td>5 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Cooling Min Off Time</td>
<td>3 Min</td>
<td>3 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Heating Stage Up</td>
<td>3 Min</td>
<td>3 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Heating Stage Down</td>
<td>1 Min</td>
<td>1 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Heating Min Run Time</td>
<td>2 Min</td>
<td>2 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Heating Min Off Time</td>
<td>1 Min</td>
<td>1 Min</td>
<td>15 Min</td>
</tr>
</tbody>
</table>

Setpoint Screen #32 - Sensor Calibration for SPC, SAT & RAT

- Sensor Calibration
 - SPC: XX.X° 0.00°
 - SAT: XX.X° 0.00°
 - RAT: XX.X° 0.00°

If the Space, Supply, or Return Air Temperature Sensors are reading incorrectly, you can use this option to enter an offset temperature to adjust the Sensor’s Temperature. Enter a positive Sensor Calibration value to raise the Space Temperature Sensor, Supply Air Temperature Sensor, or Return Air Temperature Sensor reading and a negative value to lower the Sensor reading.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Calibration SPC</td>
<td>-100.0°F</td>
<td>0.0°F</td>
<td>+100.0°F</td>
</tr>
<tr>
<td>Sensor Calibration SAT</td>
<td>-100.0°F</td>
<td>0.0°F</td>
<td>+100.0°F</td>
</tr>
<tr>
<td>Sensor Calibration RAT</td>
<td>-100.0°F</td>
<td>0.0°F</td>
<td>+100.0°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #33 - Sensor Calibration for OAT

- Sensor Calibration
 - OAT: XX.X° 0.00°

If the Outdoor Air Temperature Sensor is reading incorrectly, you can use this option to enter an offset temperature to adjust the Sensor’s Temperature. Enter a positive Sensor Calibration value to raise the Outdoor Air Temperature Sensor reading and a negative value to lower the Sensor reading.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Calibration OAT</td>
<td>-100.0°F</td>
<td>0.0°F</td>
<td>+100.0°F</td>
</tr>
</tbody>
</table>
VAV/CAV CONTROLLER STATUS

VAV/CAV Status Screen Index

Status Screen Instructions

From any menu screen, press `<STATUS>`. The Unit Selection Screen, shown below, will appear requesting that you enter the unit ID number.

![Unit Selection Screen](image)

Enter the correct unit ID number of the Unit Controller you want to view Status for and press `<ENTER>`. Once communication is established, the *00* message will go away. Then press `<↓>`. You will then see Status Screen #1. Press `<ENTER>` to save entered data and press `<↓>` to scroll through the screens.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

VAV/CAV Status Screen Index

<table>
<thead>
<tr>
<th>Status Screen #1</th>
<th>HVAC Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Screen #2</td>
<td>Cooling/Heating/Economizer Status</td>
</tr>
<tr>
<td>Status Screen #3</td>
<td>Current Controlling Temperature and Cooling and Heating Setpoints</td>
</tr>
<tr>
<td>Status Screen #4</td>
<td>H/C Demand, Space Temperature & CO₂ Level</td>
</tr>
<tr>
<td>Status Screen #5</td>
<td>Current Outdoor Air Temperature and Humidistat</td>
</tr>
<tr>
<td>Status Screen #6</td>
<td>Current Supply Air Temperature, Return Air Temperature, and Active Supply Air Temperature Setpoint</td>
</tr>
<tr>
<td>Status Screen #7</td>
<td>Current Static Pressure and Current Fan VFD Signal Percentage and Economizer Percentage</td>
</tr>
<tr>
<td>Status Screen #8</td>
<td>Current Relief Pressure and Current Relief Fan VFD Signal</td>
</tr>
<tr>
<td>Status Screen #9</td>
<td>MODGAS Output Percentage & MHGRV Output Percentage</td>
</tr>
<tr>
<td>Status Screens #10-30</td>
<td>Supply Fan and Other Relays</td>
</tr>
<tr>
<td>Status Screen #31</td>
<td>No Alarms! or Alarms Present</td>
</tr>
<tr>
<td>Status Screen #32</td>
<td>Bad Space Temperature, Fan Proving, Mechanical Cool Alarm</td>
</tr>
<tr>
<td>Status Screen #33</td>
<td>Mechanical Heat Alarm, Dirty Filter, High Control Temperature</td>
</tr>
<tr>
<td>Status Screen #34</td>
<td>Low Control Temperature</td>
</tr>
</tbody>
</table>
VAV/CAV Controller Status

Status Screen 1 - Mode

<table>
<thead>
<tr>
<th>VAV/CAV v 1.00 0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupied Mode</td>
</tr>
<tr>
<td>Vent Mode</td>
</tr>
<tr>
<td>07/16/2013 05:00 PM</td>
</tr>
</tbody>
</table>

Line 2
Displays one of the following:

- Unoccupied Mode Remote Signal ON
- Occupied Mode Override Mode
- Holiday Mode Zone Demand!
- Forced Schedule Mode OUTPUT FORCE MODE!
- SUPPLY AIR CUTOFF! High CO2 Level Mode!

Line 3
If you selected Supply Air as the controlling sensor, this line will display:
Supply Air Control

If you select Space Temp or Return Air Control, the display will show one of the following:

- Venting Mode Cooling Mode
- Heating Mode Dehumidify Mode

Line 4
Displays one of the following:

- MM/DD/YY HH:MM XX (XX = AM or PM)
- Fan Starting Delay and then time will display
xx Left in WarmUp (Number of Minutes Left)

Status Screen 2 - Cooling, Heating, Economizer

<table>
<thead>
<tr>
<th>VAV/CAV v 1.00 0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Enabled</td>
</tr>
<tr>
<td>Heating Enabled</td>
</tr>
<tr>
<td>Economizer Disabled</td>
</tr>
</tbody>
</table>

Line 2
Displays one of the following:

- Cooling Enabled
- Heating Enabled
- Economizer Disabled

Line 3
Displays one of the following:

- Heating Enabled
- Heating Disabled

Line 4
Displays one of the following:

- Economizer Enabled
- Economizer Disabled

Status Screen 3 - Mode Enable Temperature & Mode Cooling and Heating Setpoints

<table>
<thead>
<tr>
<th>VAV/CAV v 1.00 0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature: XX.X°F</td>
</tr>
<tr>
<td>Cooling Spt: XX.X°F</td>
</tr>
<tr>
<td>Heating Spt: XX.X°F</td>
</tr>
</tbody>
</table>

Line 2
Mode Enable Temperature
Can be the Supply Air Temperature, Return Air Temperature, Outdoor Air Temperature, or Space Temperature, depending on which one has been configured as the Mode Enable Sensor.

Line 3
Cooling Mode Setpoint
Based on the current Occupied/Unoccupied Mode of operation.

Line 4
Heating Mode Setpoint
Based on the current Occupied / Unoccupied Mode of operation. If the Supply Air Sensor is the controlling sensor, this will indicate the Night Setback Temperature that the Space Temperature uses to bring on Heat during the Unoccupied Mode.

Status Screen 4 - H/C Demand, Space Temp, and CO₂ Level

<table>
<thead>
<tr>
<th>VAV/CAV v 1.00 0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>H/C Demand: XX.X°F</td>
</tr>
<tr>
<td>Space Tmp.: XX.X°F</td>
</tr>
<tr>
<td>CO₂ Level.: 0 PPM</td>
</tr>
</tbody>
</table>

Line 2
Current Heating or Cooling Demand
Based on the comparison between the Controlling Temperature and the Heating and Cooling Setpoints. A positive number indicates a Cooling demand and a negative number indicates a Heating demand.

Line 3
Space Temperature
This sensor is only used during Unoccupied hours unless it has been configured as the Controlling Sensor.

Line 4
CO₂ Level
If you configured for a CO₂ Sensor, this line will display the CO₂ Level. Otherwise, it will remain blank.
Status Screen 5 - Outdoor Air Temperature & Humidistat

VAV/CAV v 1.00 0001
Outdoor Air: XX.X°F
Humidistat: Open

Line 2 Current Outdoor Air Temperature
If an Outdoor Air Temperature Sensor has been installed and configured on the unit or if an Outdoor Air Broadcast has been configured on another Unit Controller on the system, the Outdoor Air Temperature will appear on this line. If not, this line will display a temperature that is half way between the Cooling and Heating Lockout Setpoints.

Line 3 Current Outdoor Air Relative Humidity
If an Outdoor Humidity Sensor has been installed and configured on the Unit Controller, the Outdoor Air Relative Humidity Percentage will appear on this line. If not, this line will display 0%.

Status Screen 6 - Supply Air Temperature & Setpoint

VAV/CAV v 1.00 0001
Supply Air.: XX.X°F
Return Air.: XX.X°F
Supply Spt.: XX.X°F

Line 2 Current Supply Air Temperature
The Supply Air Temperature is always required. If a Supply Air Temperature Sensor is not installed, the controller will not operate correctly and will display 0°F.

Line 3 Current Active Return Air Setpoint
This is the Return Air Setpoint for the mode that the unit is currently operating in.

Line 4 Current Active Supply Air Setpoint
This is the Supply Air Setpoint for the mode that the unit is currently operating in. If the Supply Air Reset is configured, this is the calculated setpoint based on the current Reset Source conditions. Can be reset from an external signal if this option is selected.

Status Screen 7 - Static Pressure, Fan VFD, and Economizer

VAV/CAV v 1.00 0001
Static Pr.: 0.00"
Fan VFD: 0%
Economizer: 0%

Line 2 Current Static Pressure Reading
Line 3 Current Fan VFD Signal Percentage
Line 4 Current Economizer Damper Percentage Open

Status Screen 8 - Relief Pressure and Relief VFD

VAV/CAV v 1.00 0001
Relief Pr.: 0.00"
Relief VFD: 0%
[Relief is Optional]

Line 2 Current Relief Pressure
If the unit is configured for Relief Pressure Control. This will display 0.00” if you don’t control Relief Pressure.

Line 3 Current Relief Fan VFD Signal.
This will display 0% if the unit is not configured for Relief Pressure Control.

Line 4 Just a reminder that this is an optional control output and may or may not have live data to display.
Status Screen 9 - MODGAS Output % & MHGRV Output %

Line 2 Current MODGAS Heating Output Signal
Indicates the percentage of the output signal being supplied to the MODGAS Controller when you have one connected to your HVAC unit. If you do not have a MODGAS Controller connected to your Unit Controller, this screen will indicate [No MODGAS Connected].

Line 3 Current MHGRV Reheat Valve Output Signal Percentage
Indicates the percentage of the output signal being supplied to the MHGRV Controller when you have one connected to your Unit Controller. If you do not have an MHGRV Controller connected to your Unit Controller, this screen will indicate [No REHEAT Connected].

Line 4 Optional Equipment
Indicates that these outputs are optional and therefore may or may not have live data to display.

Status Screens 10-30 - Relays

Line 2 Relay Status
On Board Relays 1-5, Expansion Board Relays 1-16.
On Board Relay #1 is the Fan and is not configurable.

Line 3 Relay description of what it is configured for
Possible options are as follows:
- Not Used
- Pre-Heater
- Heat Stage
- Alarm Relay
- Cool Stage
- Override
- Warm-up Mode
- Occupied
- Rev Valve
- Economizer (OA Damper)
- Gas Re-Heat (HGR Relay)
- Exhaust Fan

Line 4 Current relay status On or Off or FRC
FRC indicates the relay is forced to its current condition.

Status Screen 31 - Alarm Conditions

Line 2 Blank
Line 3 NO ALARMS! OR ALARMS PRESENT
If alarms are present, the screens that follow will display one or more of the following:
- Bad Space Temp
- Fan Proving
- Mech Cool Alm
- Mech Heat Alm
- Dirty Filter
- High Control Temp
- Low Control Temp

+ Press < | > to scroll through all active alarms.

For Alarm Definitions, see the VAV/CAV Controller Technical Guide.
MUA II Configuration Screen Index

The available Configuration Screens for the MUA II Controller are listed on the next few pages by sequential screen number. When the Unit Controller is configured for the first time, it is best to start with screen #1 and proceed to each screen in numerical order until you have viewed all available Configuration Screens. This ensures that you have seen all the available Controller configuration possibilities and have the opportunity to change or accept the defaults for each screen.

Once the unit is configured and you decide to change one of the screen options, it is helpful to know what screen number contains the configuration you wish to change. With this in mind, the following is a list of all the MUA II Configuration Screens in numerical order with a brief listing of the configuration feature available on each screen.

Screen #1	Proof of Flow Switch Installed
Screen #2	OA Humidity Sensor Installed
Screen #3	Heat in Dehumidify Installed
Screen #4	If External Heat, Output Range
Screen #5	Is External Heat Reverse Action
Screen #6	Broadcast Outside Temperature
Screen #7	Broadcast Humidity Reading
Screens #8-27	Relay Configuration Relays 2-21

System Manager SD Instructions

From any Main screen, press <SETPOINTS>. The screen below will appear because this option requires passcode clearance. Only a Level 2 passcode can change setpoints.

```
THIS ACTION REQUIRES
PASSCODE CLEARANCE
Enter Passcode: XXXX
```

If the correct passcode was entered, the Unit Selection Screen will be displayed.

```
Unit Selection*00*
Enter Unit ID#
Selected ID#: XXXX
```

Enter the Unit ID of the controller you wish to change schedules for and press <ENTER>. Once communication is established, the *00* message will go away. Then press <>.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

The following screen will be displayed:

```
Change Setpoints
Configure Unit
Save/Copy/Restore
```

Scroll down to the ‘Configure Unit’ option and press <ENTER>. This will take you to the first Configuration Screen shown below.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

Modular Service Tool Instructions

No matter what screen or menu you’re in, press <CONFIGURATION>. The Unit Selection Screen will appear, shown below, requesting that you enter the unit ID number.

```
Unit Selection*00*
Enter Unit ID#
Selected ID#: XXXX
```

Enter the correct unit ID number of the Unit Controller you want to configure and then press <ENTER>. Once communication is established, the *00* message will go away. Then press <>. You will then see Unit Configuration Screen #1. Press <ENTER> to save entered data and press <> to scroll through the screens.

NOTE: If the *00* remains, it indicates a communication failure to the controller.
Configuration Screens

In order to correctly set up the Unit Controller, you must first configure several parameters in regard to the type of HVAC unit and system you have installed. Most of these values and operating parameters are only set once at the initial system setup and are never changed.

Configuration Screen #1 - Proof of Flow Switch Installed

If you need proof of airflow before allowing any Heating or Cooling Stages to operate, install a Differential Pressure Switch with a contact closure that is connected to analog input #7 and select this option. If this option is not selected, the air handler assumes there is adequate airflow any time the fan is running and ignores this signal causing analog input #7 to default to Space Humidity. Default is No.

Configuration Screen #2 - Outdoor Air Humidity Sensor Installed

This configuration screen allows you to indicate whether an Outdoor Air Humidity Sensor is to be installed and used to calculate Dewpoint settings. If you either don’t have an Outdoor Air Humidity Sensor installed or have one installed but wish to use only Drybulb Temperatures for control of the HVAC unit, the setting should be set to No. If you have an Outdoor Air Humidity Sensor installed and wish to use Dewpoint calculations for unit control, select Yes. If you have a sensor installed and do not select Yes, the sensor readings will be ignored. Default is No.

Configuration Screen #3 - Heat In Dehumidify Control

If you need to allow Heat during Dehumidification, select this option. If this option is not selected, the controller assumes that only Reheat will be allowed during Dehumidification Mode. Default is No.

Configuration Screen #4 - If External Heat, Output Range

If you have an External Heating device to be controlled by the MUA II Controller, you can select between the voltage ranges that will be used to control the device. The available options are 2-10 VDC and 0-10 VDC. Default is 0-10V.

Configuration Screen #5 - Is External Heat, Reverse Acting

If you need the modulation of the External Heat to be Reverse Acting, select this option. If this option is not selected, the controller assumes the modulation will be Direct Acting. Default is No.

Configuration Screen #6 - Broadcast Outdoor Temperature

If you have other unit controllers on the system, you can elect to Broadcast the Outdoor Air Temperature to these units by selecting Yes on this screen. If you don’t have other controllers or they have their own Outdoor Air Temperature Sensors, select No. Default is No.
MUA II CONTROLLER CONFIGURATION

MUA II Configuration Screens

<table>
<thead>
<tr>
<th>Configuration Screen #7 - Broadcast Humidity Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>If you have other unit controllers on the system, you can elect to broadcast the Outdoor Humidity to these units by selecting Yes on this screen. If you don’t have other controllers or they have their own Outdoor Humidity Sensors, select No. Default is No.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration Screens #8-#27 - Relay Configuration Screens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>The following 20 screens allow you to set the 4 relays on the MUA II Controller board and up to 16 additional relays when relay expansion board(s) are used.</td>
</tr>
<tr>
<td>The first relay on the controller is always reserved for the Supply Fan. The remaining 4 relays on the main board and the additional 16 relays on the expansion relay boards can be configured by pressing the left or right arrow key to change the relay to the desired configuration.</td>
</tr>
<tr>
<td>Available options are</td>
</tr>
<tr>
<td>• Not Used</td>
</tr>
<tr>
<td>• Heat Stage</td>
</tr>
<tr>
<td>• Cool Stage</td>
</tr>
<tr>
<td>• Warmup Mode</td>
</tr>
<tr>
<td>• Rev Valve</td>
</tr>
<tr>
<td>• Gas Re-Heat</td>
</tr>
<tr>
<td>• Exhaust Fan</td>
</tr>
<tr>
<td>• Pre-Heater</td>
</tr>
<tr>
<td>• External Heat</td>
</tr>
</tbody>
</table>

The MUA II Controller does not require you to start configuring your Heating or Cooling Stages first nor does it require that you utilize consecutive relays until all Heating or Cooling Stages have been defined. This method allows the greatest flexibility in the field, but it requires close attention to the wiring of the Heating and Cooling Stages to prevent incorrect and possibly harmful operation. The controller assumes that there will only be one relay configured for Hot Gas Reheat and one relay for External Heat Enable, although it doesn’t prevent multiple relays from being selected.
Setpoints - General Procedures

Modular Service Tool Instructions
From any menu screen, press <SETPOINTS>. The Unit Selection Screen, shown below, will appear requesting that you enter the unit ID number.

![Unit Selection Screen]

Enter the correct unit ID number of the Unit Controller you want to change Setpoints for and press <ENTER>. Once communication is established, the *00* message will go away. Then press <↓> . You will then see Setpoint Screen #1. Press <ENTER> to save entered data and press <↓> to scroll through the screens.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

System Manager SD Instructions
From any Main screen, press <SETPOINTS>. The screen below will appear because this option requires passcode clearance. Only a Level 2 passcode can change setpoints.

![Passcode Clearance]

If the correct passcode was entered, the Unit Selection Screen will be displayed.

Enter the Unit ID of the controller you wish to change schedules for and press <ENTER>. Once communication is established, the *00* message will go away. Then press <↓>.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

The following screen will be displayed:

![Setpoint Screen Index]

Scroll to the ‘Change Setpoints’ option and press <ENTER>. This will take you to the first Setpoints Screen shown below.

Setpoint Screen Index
The available Setpoint Screens for the MUA II Controller are listed on the next few pages by sequential screen number. When each MUA II Controller is configured for the first time, it is best to start with screen #1 and proceed to each Setpoint Screen in numerical order until you have viewed all available Setpoint Screens. This ensures that you have seen all of the available MUA II Controller Setpoint possibilities and have the opportunity to change or accept the defaults for each screen. Once the unit Setpoints are configured and you decide to change one of the screen options, it is helpful to know what screen number contains the configuration you wish to change. With this in mind, the following is a list of all the MUA II Setpoint Screens in numerical order with a brief listing of the Setpoint feature available on each screen:

- Screen #1 Supply Air Temperature Setpoint
- Screen #2 Staging Deadbands—Cooling & Heating
- Screen #3 Unoccupied Deadbands—Cooling & Heating
- Screen #4 Systems with Re-Heat—Dewpoint Control Setpoint
- Screen #5 Enthalpy Staging—Deadband & Hysterisis
- Screen #6 Heat Delay During Dehumidification Will Occur
- Screen #7 Alarm Limits—High & Low Supply Air Temperature
- Screen #8 Supply Air Alarms If Out of Range For
- Screen #9 Set Supply Air Temperature Reset
- Screen #10 Set Dewpoint Reset
- Screen #11 Cooling Stage Delays—Staging Up & Down
- Screen #12 Cooling Stage Delays—Min Run & Off Times
- Screen #13 Heating Stage Delays—Staging Up & Down
- Screen #14 Heating Stage Delays—Min Run & Off Times
- Screen #15 External Modulating Heat—Deadband & Time Period
- Screen #16 Push-Button Override Duration
- Screen #17 Slide Offset Duration
- Screen #18 HVAC Schedule
- Screen #19 Fan Time Delay Before Activation Can Occur
- Screen #20 Sensor Calibrations For SAT & OAT
- Screen #21 Sensor Calibration Reset Sensor - Space
MUA II CONTROLLER SETPOINTS
MUA II Setpoint Screens

Setpoint Screen #1 - Supply Air Temperature Setpoint

The Supply Air Setpoint is the desired temperature to be delivered by the MUA II at any time during the Occupied Mode of operation.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Air Temp Setpoint</td>
<td>50°F</td>
<td>70°F</td>
<td>90°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #2 - Staging Deadbands

The Cooling Deadband added to the Supply Air Setpoint is the Cooling Mode Setpoint.

When the Outside Air Temperature rises above this setpoint, the MUA II will go into Cooling Mode. The Heating Deadband is subtracted from the Supply Air Setpoint to get the Heating Mode Setpoint.

When the Outside Air Temperature drops below this setpoint, the MUA II will go into Heating Mode.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Deadband</td>
<td>2°F</td>
<td>5°F</td>
<td>20°F</td>
</tr>
<tr>
<td>Heating Deadband</td>
<td>2°F</td>
<td>5°F</td>
<td>20°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #3 - Unoccupied Deadbands

During the Unoccupied Mode, these values will be added to the Cooling Setpoint and subtracted from the Heating Setpoint. These settings are only used if the controller has been configured to utilize a Space Temperature Sensor.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unoccupied Cooling Deadband</td>
<td>0°F</td>
<td>0°F</td>
<td>30°F</td>
</tr>
<tr>
<td>Unoccupied Heating Deadband</td>
<td>0°F</td>
<td>0°F</td>
<td>30°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #4 - Systems with Reheat - Dewpoint Control Setpoint

The systems capable of Dehumidification will enter this mode of operation when the Outside Air Dewpoint rises above the Dewpoint Setpoint.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dewpoint Setpoint</td>
<td>40°F</td>
<td>55°F</td>
<td>80°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #5 - Enthalpy Staging - Deadband and Hysteresis

The Enthalpy Deadband is the amount of Enthalpy in the Outside Air needed to activate an extra stage of cooling. The Enthalpy Hysteresis is used to avoid unnecessary cycling of the Cooling Stages when the Outside Enthalpy is close to the setpoint.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enthalpy Deadband</td>
<td>3 BTU</td>
<td>5 BTU</td>
<td>20 BTU</td>
</tr>
<tr>
<td>Enthalpy Hysteresis</td>
<td>0.5 BTU</td>
<td>1.0 BTU</td>
<td>2.5 BTU</td>
</tr>
</tbody>
</table>

Setpoint Screen #6 - Heat Delay During Dehumidification

If Heating during Dehumidification is configured, this is the amount of time the Heating call will be delayed after the Dehumidification is activated.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Delay</td>
<td>0 Min</td>
<td>2 Min</td>
<td>10 Min</td>
</tr>
</tbody>
</table>
Setpoint Screen #7 - Alarm Limits

If the Supply Air Temperature ever rises above the High SAT Limit or drops below the Low SAT Limit for a user-defined period of time, an alarm is generated.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>High SAT Limit</td>
<td>50°F</td>
<td>150°F</td>
<td>150°F</td>
</tr>
<tr>
<td>Low SAT Limit</td>
<td>0°F</td>
<td>0°F</td>
<td>70°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #8 - Supply Air Alarm

This is the amount of time the Supply Air Temperature must be outside either the High or Low SAT Limit Setpoint before it generates an alarm.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Air Alarms If Out of Range For X Minutes</td>
<td>0 Min</td>
<td>30 Min</td>
<td>300 Min</td>
</tr>
</tbody>
</table>

Setpoint Screen #9 - Set Supply Air Temperature Reset

A Type III Thermistor Sensor connected to Analog Input #1 can be used to reset the Supply Air Temperature. This screen allows you to set the Reset Source Temperatures that the Reset will begin at and the new Reset Supply Air Temperature range. Determine a desired Space Temperature you would like to maintain and enter a temperature in the top SPC field that is 2 degrees higher than your desired Space Temperature. Next, using the desired Space Temperature you would like to maintain, enter a temperature in the bottom SPC field that is 2 degrees lower than your desired Space Temperature. Then enter a value in the “Rst” field on this screen that is equal to the highest Supply Air Temperature desired. Whatever Supply Air Temperature you enter for “Rst”, when added together and divided by 2, should result in a temperature value equal to your desired Space Temperature.

The “Spt” field value cannot be changed from this screen. This Supply Air Temperature Setpoint (Spt) must be set from Setpoint Screen #1 on page 46 and should be set to the lowest Supply Air Temperature that is desired.

Supply Air Temperature Reset Example:

Desired Space Temperature is 70°F

Space Temperature (SPC) = 72°F SAT Setpoint (Spt) = 55°F Space Temperature (SPC) = 68°F SAT Setpoint (Rst) = 85°F

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Range</td>
<td>40°F</td>
<td>0°F</td>
<td>100°F</td>
</tr>
<tr>
<td>Maximum Range</td>
<td>40°F</td>
<td>0°F</td>
<td>100°F</td>
</tr>
<tr>
<td>Reset</td>
<td>SAT Spt</td>
<td>SAT Spt</td>
<td>Spt + 50°F</td>
</tr>
</tbody>
</table>
Both the Heating Stages and the DX Cooling Stages utilize Staging Up and Down Delay Periods between stages and Minimum Run Times and Off Times.

Both modes have their own set of Staging and Run Delay times. The Heating timer screens look exactly the same as the Cooling except they reference the Heating instead of Cooling.

See the *MUA II Controller Technical Guide* for information on how these Delays and Run Times are used.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Stage Up</td>
<td>3 Min</td>
<td>3 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Cooling Stage Down</td>
<td>1 Min</td>
<td>1 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Cooling Min Run Time</td>
<td>5 Min</td>
<td>5 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Cooling Min Off Time</td>
<td>3 Min</td>
<td>3 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Heating Stage Up</td>
<td>3 Min</td>
<td>3 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Heating Stage Down</td>
<td>1 Min</td>
<td>1 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Heating Min Run Time</td>
<td>2 Min</td>
<td>2 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>Heating Min Off Time</td>
<td>1 Min</td>
<td>1 Min</td>
<td>15 Min</td>
</tr>
</tbody>
</table>

The External Modulating Heat Deadband is the range through which the External Heating device will proportionally modulate. The Time Period is the delay before another signal increase or decrease can be made and is user-adjustable. Short Time Periods may cause hunting of the Modulating Signal.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadband</td>
<td>1ºF</td>
<td>5ºF</td>
<td>30ºF</td>
</tr>
<tr>
<td>Time Period</td>
<td>5 Sec</td>
<td>5 Sec</td>
<td>500 Sec</td>
</tr>
</tbody>
</table>

If the Unit Controller has a Space Temperature Sensor installed and it has the Override Button option, the HVAC unit will initiate Occupied Mode any time the Override Button is pressed and held for less than 3 seconds.
The Push-Button Override Duration Setpoint allows you to adjust the amount of time the Override will remain in effect when the Override Button is pressed. To cancel the Override before the Override Duration time period expires, press the Override Button for 5 to 10 seconds.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push-Button Override Duration</td>
<td>0.0 Hr</td>
<td>2.0 Hr</td>
<td>8.0 Hr</td>
</tr>
</tbody>
</table>

Setpoint Screen #17 - HVAC Mode Sensor Slide Offset

If the Unit Controller has a Space Temperature Sensor with the Slide Adjust option installed, the HVAC Mode Enable Heating and Cooling Setpoints can be offset by the HVAC Mode Sensor Slide Offset Setpoint value. When the Slide Adjust bar is in the middle, no offset will occur. If the Slide Adjust bar is moved all the way to the top of the Sensor, the Heating and Cooling Setpoints will be raised by the Setpoint value you have entered. If the Slide Adjust bar is moved all the way down to the bottom of the Sensor, the Heating and Cooling Setpoints will be lowered by the Setpoint value you have entered.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC Mode Sensor Slide Offset</td>
<td>0ºF</td>
<td>0ºF</td>
<td>10ºF</td>
</tr>
</tbody>
</table>

Setpoint Screen #18 - HVAC Schedule

Normally, the MUA II Controller will use its own internal time clock and week schedules to set the Occupied Mode of operation. If you have several air handlers, you can connect an external scheduling device to the communications loop and program the air handler for the desired schedule. If the MUA II Controller is using its internal schedule, enter <0> for Internal.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule Number</td>
<td>0</td>
<td>0</td>
<td>1 to 7</td>
</tr>
</tbody>
</table>

Setpoint Screen #19 - Supply Fan Starting Delay Timer

This is the time delay that occurs before the fan is activated when the unit switches into the Occupied Mode from Unoccupied Mode.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan Start Delay Timer</td>
<td>1 Sec</td>
<td>60 Sec</td>
<td>180 Sec</td>
</tr>
</tbody>
</table>

Setpoint Screen #20 - Sensor Calibration for SAT & OAT

The Thermistor Type III temperature sensors connected to the MUA II Controller can be calibrated using this screen. Enter a Positive value to increase a reading and a Negative value to decrease a reading.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Calibration SAT</td>
<td>-100.0ºF</td>
<td>0.0ºF</td>
<td>+100.0ºF</td>
</tr>
<tr>
<td>Sensor Calibration OAT</td>
<td>-100.0ºF</td>
<td>0.0ºF</td>
<td>+100.0ºF</td>
</tr>
</tbody>
</table>

Setpoint Screen #21 - Sensor Calibration Reset for SPC

If you are using a temperature sensor connected to analog input #1 on the MUA II controller for resetting the Supply Air Temperature, the Thermistor Type III temperature sensor connected to the MUA II Controller can be calibrated using this screen. Enter a Positive value to increase a reading and a Negative value to decrease a reading.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Calibration SPC</td>
<td>-100.0ºF</td>
<td>0.0ºF</td>
<td>+100.0ºF</td>
</tr>
</tbody>
</table>
MUA II CONTROLLER STATUS

MUA II Controller Status Screen Index

Status Screen Instructions
From any menu screen, press <STATUS>. The Unit Selection Screen, shown below, will appear requesting that you enter the unit ID number.

Unit Selection*00*
Enter Unit ID#
Selected ID#: XXXX

Enter the correct unit ID number of the Unit Controller you want to view Status for and press <ENTER>. Once communication is established, the *00* message will go away. Then press <↓>. You will then see Status Screen #1. Press <ENTER> to save entered data and press <↓> to scroll through the screens.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

MUA II Status Screen Index

<table>
<thead>
<tr>
<th>Status Screen</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen #1</td>
<td>HVAC Mode</td>
</tr>
<tr>
<td>Screen #2</td>
<td>Current Supply Air Temperature, and Active Supply Air Temperature Setpoint</td>
</tr>
<tr>
<td>Screen #3</td>
<td>Current Outdoor Air Temperature and Cooling and Heating Setpoints</td>
</tr>
<tr>
<td>Screen #4</td>
<td>Current Dewpoint Temperature, Dewpoint Setpoint and Outdoor Air Humidity</td>
</tr>
<tr>
<td>Screen #5</td>
<td>Current Enthalpy, Enthalpy Setpoint, and Enthalpy Deadband</td>
</tr>
<tr>
<td>Screen #6</td>
<td>Current Space Temperature and Reset Humidity Setpoint</td>
</tr>
<tr>
<td>Screen #7</td>
<td>MODGAS Output Percentage & MHGRV Output Percentage</td>
</tr>
<tr>
<td>Screens #8-28</td>
<td>Supply Fan and Other Relays</td>
</tr>
<tr>
<td>Screen #29</td>
<td>No Alarms! or Alarms Present</td>
</tr>
<tr>
<td>Screen #30</td>
<td>No Supply Temperature, No Outdoor Air Temperature, No Outdoor Air Humidity</td>
</tr>
<tr>
<td>Screen #31</td>
<td>Fan Proving, Low SAT, High SAT</td>
</tr>
</tbody>
</table>
Status

The MUA Controller Status Screens are accessed by pressing the <STATUS> button on the Modular Service Tool or Modular System Manager. Enter the correct unit ID number of the MUA Controller you want to configure and press <ENTER>. Once communication is established, the *00* message will go away. Then press <◊>. You will then see Status Screen #1. Press <◊> to scroll through the screens.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

Status Screen 1 - HVAC Mode

<table>
<thead>
<tr>
<th>Line 2</th>
<th>Displays one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNOCCUPIED</td>
<td>Remote Occupied</td>
</tr>
<tr>
<td>OCCUPIED</td>
<td>Holiday Operations</td>
</tr>
<tr>
<td>FORCED OCCUPIED</td>
<td>FORCED UNOCCUPIED</td>
</tr>
<tr>
<td>FORCED OUTPUT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line 3</th>
<th>Vent Mode</th>
<th>Cooling Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating Mode</td>
<td>Dehumidification</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line 4</th>
<th>Displays one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM/DD/YY</td>
<td>HH:MM XX (XX = AM or PM)</td>
</tr>
<tr>
<td>Fan Starting Delay and then time will display xx Left in WarmUp (Number of Minutes Left)</td>
<td></td>
</tr>
</tbody>
</table>

Status Screen 2 - Current Supply Air Temperature & Supply Air Setpoint

<table>
<thead>
<tr>
<th>Line 2</th>
<th>Current Supply Air Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 3</td>
<td>Current Supply Air Setpoint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MUA-II v.2.01 0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Air: XX.X°F</td>
</tr>
<tr>
<td>Supply Spt: XX.X°F</td>
</tr>
</tbody>
</table>

Status Screen 3 - Current Outdoor Air Temperature and Cooling & Heating Setpoints

<table>
<thead>
<tr>
<th>MUA-II v.2.01 0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Air: XX.X°F</td>
</tr>
<tr>
<td>Cooling Spt: XX.X°F</td>
</tr>
<tr>
<td>Heating Spt: XX.X°F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line 2</th>
<th>Current Outdoor Air Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 3</td>
<td>Cooling Cooling Mode Setpoint</td>
</tr>
<tr>
<td>Based on the current Occupied/Unoccupied Mode of operation.</td>
<td></td>
</tr>
<tr>
<td>Line 4</td>
<td>Current Heating Mode Setpoint</td>
</tr>
<tr>
<td>Based on the current Occupied/Unoccupied Mode of operation.</td>
<td></td>
</tr>
</tbody>
</table>

Status Screen 4 - Current Outdoor Air Dewpoint, Dewpoint Setpoint & Outdoor RH

<table>
<thead>
<tr>
<th>MUA-II v.2.01 0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dewpoint...: XX.X°F</td>
</tr>
<tr>
<td>Dewpoint Sp: XX.X°F</td>
</tr>
<tr>
<td>Outdoor RH.: 0.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line 2</th>
<th>Current Outdoor Air Dewpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 3</td>
<td>Current Dewpoint Setpoint</td>
</tr>
<tr>
<td>Line 4</td>
<td>Current Outdoor Humidity</td>
</tr>
</tbody>
</table>

Status Screen 5 - Current Outdoor Air Enthalpy, Enthalpy Setpoint & Enthalpy Deadband

<table>
<thead>
<tr>
<th>MUA-II v.2.01 0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enthalpy...: xx.xBTU</td>
</tr>
<tr>
<td>Enthalpy Sp: xx.xBTU</td>
</tr>
<tr>
<td>Enthalpy DB: xx.xBTU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line 2</th>
<th>Current Outdoor Air Enthalpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 3</td>
<td>Current Enthalpy Setpoint</td>
</tr>
<tr>
<td>Line 4</td>
<td>Current Enthalpy Deadband</td>
</tr>
</tbody>
</table>
MUA II CONTROLLER STATUS

MUA II Status Screens

Status Screen 6 - Current Reset Temperature & Humidity Reading

<table>
<thead>
<tr>
<th>Line 1</th>
<th>MUA-II v.2.01 0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 2</td>
<td>Space Temp: XX.X°F</td>
</tr>
<tr>
<td>Line 3</td>
<td>Reset RH...: XX.X%</td>
</tr>
</tbody>
</table>

Line 2 Current Reset Temperature Reading

Line 3 Current Reset Humidity Reading

Status Screen 7 - MODGAS Output %, MHGRV Output % & External Heat Output %

<table>
<thead>
<tr>
<th>Line 1</th>
<th>MUA-II v.2.01 0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 2</td>
<td>MODGAS Pos...: XXX%</td>
</tr>
<tr>
<td>Line 3</td>
<td>MHGRV Pos...: XXX%</td>
</tr>
<tr>
<td>Line 4</td>
<td>External Heat: 0.0%</td>
</tr>
</tbody>
</table>

Line 2 Current MODGAS Heating Output Signal

Indicates the percentage of the output signal being supplied to the MODGAS Controller when you have one connected to your HVAC unit. If you do not have a MODGAS Controller connected to your Unit Controller, this screen will indicate [NO MODGAS DETECTED].

Line 3 Current MHGRV Reheat Valve Output Signal Percentage

Indicates the percentage of the output signal being supplied to the MHGRV Controller when you have one connected to your Unit Controller. If you do not have an MHGRV Controller connected to your Unit Controller, this screen will indicate [NO REHEAT DETECTED].

Line 4 External Heat Signal

This is the signal, 0-10 or 2-10 VDC, to an optional external modulating heating device.

Status Screens 8-28 - Relays

<table>
<thead>
<tr>
<th>Line 2</th>
<th>VAV/CAV v 1.00 0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 3</td>
<td>On Board Rly 1 FAN</td>
</tr>
<tr>
<td>Line 4</td>
<td>Off</td>
</tr>
</tbody>
</table>

Line 2 Relay Status

On Board Relays 1-5, Expansion Board Relays 1-16. On Board Relay #1 is the Fan and is not configurable.

Line 3 Relay description of what it is configured for

Possible options are as follows:

- Not Used
- Gas Re-Heat
- Heat Stage
- Exhaust Fan
- Cool Stage
- Pre-Heater
- Warm-Up Mode
- External Heat
- Rev Valve

Line 4 Current relay status On or Off or FRC

FRC indicates the relay is forced to its current condition.

Status Screens 29-31 - Alarm Conditions

<table>
<thead>
<tr>
<th>Line 2</th>
<th>VAV/CAV v 1.00 0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 3</td>
<td>NO ALARMS!</td>
</tr>
</tbody>
</table>

Line 2 Blank

Line 3 NO ALARMS! OR ALARMS PRESENT

If alarms are present, the screens that follow will display one or more of the following:

- No Supply Temp Fan Proving
- No Outdoor Temp Low SAT
- No Outdoor RH High SAT

Press <↓> to scroll through all active alarms.

For Alarm Definitions, see the *MUA II Controller Technical Guide.*
VAV Zone Configuration

In order to correctly set up the VAV/Zone Controller, you must first configure several parameters in regard to the type of system and operating parameters for the VAV/Zone Controller you have installed. Most of these values and operating parameters are only set once at the initial system setup and are never changed.

Modular Service Tool Instructions

From any Menu Screen, press the <CONFIGURATION> button. The Unit Selection Screen, shown below, will appear requesting that you enter the unit ID number.

Enter the correct unit ID number of the VAV/Zone controller you want to configure, and press <ENTER>. Once communication is established, the *00* message will go away. Then press <◀>. You will then see Unit Configuration Screen #1. Press <ENTER> to save entered data and press <◀> to scroll through the screens.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

System Manager SD Instructions

From any Main screen, press <SETPOINTS>. The screen below will appear because this option requires passcode clearance. Only a Level 2 passcode can change setpoints.

Enter the correct passcode was entered, the Unit Selection Screen will be displayed.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

The following screen will be displayed:

Configuration Screen #1 - Box Configuration

Select one of the following options:

0 = COOLING ONLY BOX (will display as CO Box)
1 = H/C CHANGEOVER BOX (will display as HC Box)
2 = SERIES FAN BOX (will display as SF Box)
3 = PARALLEL FAN BOX (will display as PF Box)

CAUTION: If you change this setting, you MUST cycle power to the controller to allow it to re-calibrate the damper feedback positions for its new direction of control!
VAV/ZONE CONTROLLER PROGRAMMING

VAV/Zone Configuration Screens

Configuration Screen #3 - Voting Zone

```
XX Box Cnfg IDXXXX
Is This Box a Voting Zone...: YES
Use < Or > To Change
```

Select YES if this is a Zoned System so that the box can be included as a voting zone.

Configuration Screen #4 - Pressure Independent Airflow Constant

```
XX Box Cnfg IDXXXX
Pr Independent Boxes Airflow @ 1" WG Constant...: 1200 CFM
```

If this is a Pressure Independent Box, you must enter this airflow constant so that the CFM readings can be correctly calculated. This airflow constant is provided by the box manufacturer and depends on the diameter of the duct.

Configuration Screen #5 - Expansion Relays Heating Stages

```
XX Box Cnfg IDXXXX
Expansion Relays [Optional] Steps of Reheat...: 2
```

If you require the VAV/Zone Controller to control reheat for the zone it is installed in, you must include a relay expansion board and then configure the number of heating stages (1, 2, or 3) that it will be controlling whenever there is a heating demand in the space. Enter <0> if you don’t require this option.

Configuration Screen #6 - Proportional Heating Signal

```
XX Box Cnfg IDXXXX
Proportional Heating Signal...: 0 - 10 VDC
Use < Or > To Change
```

Select 0-10 VDC or 2-10 VDC as the range of the proportional heat output.

Configuration Screen #7 - Box Heat Allow

```
XX Box Cnfg IDXXXX
Allow Box Heat With HVAC Heat....: NO
Use < Or > To Change
```

Select YES to allow the Heating Relay’s Controlling Box Heat to remain on even when the HVAC unit is in Supply Air Heating Mode. This is used as a method to provide supplemental heat if for some reason the HVAC heat cannot satisfy the heating demand.

Configuration Screen #8 - Main Fan Status

```
XX Box Cnfg IDXXXX
This Unit Needs Main Fan Status...: NO
Use < Or > To Change
```

This setting only applies to the unoccupied mode of operation. Select YES to activate the heating stages only when the main fan is operating on non-fan terminal units. For series fan terminal units, if this setting is set to YES, the series box fan will only run when the main HVAC unit fan is running or when a space heating demand is made. For series fan terminal units, if this setting is set to NO, the series box fan will only run when a space heating demand is made. This setting has no effect on the parallel flow fan terminal unit.

Configuration Screen #9 - Push-Button Override

```
XX Box Cnfg IDXXXX
Push-Button Override Group ID #: 1
```

During Unoccupied Mode, all zones with a corresponding Group ID # will resume Occupied operation whenever any of the zones in that group has its push-button depressed to initiate an override condition. This allows you to group zones in various areas of the building. For example, individual tenants with several offices could restore occupied mode for just their zones and not affect other zones in the building.

The default group ID number for all VAV/Zone Controllers is set at the factory to 1. If you don’t want a specific zone(s) to be part of that group, you must give each one a distinct Group ID number between 2 and 16. Setting a zone’s Group ID number to 0 will disable the Space Sensor Override Button function.

If you don’t want a specific zone to be a part of any group, enter <0> for its Group ID #.
A “Dump Zone” is used when you want to control a duct heater or baseboard heater independently. A VAV/Zone Controller board with a relay expansion board is used for this purpose. No damper or actuator is used. If you need to control an auxiliary heater, select YES; otherwise, select NO.

If this system has 1 HVAC unit controlling boxes on multiple loops and the HVAC unit is on a different loop than this box, select YES; otherwise, select NO.
VAV/Zone Controller Setpoints

Modular Service Tool Instructions
From any menu screen, press <SETPOINTS>. The Unit Selection Screen, shown below, will appear requesting that you enter the unit ID number.

Unit Selection*00*
Enter Unit ID#Selected ID#: XXXX

Enter the correct unit ID number of the Controller you want to change Setpoints for and press <ENTER>. Once communication is established, the *00* message will go away. Then press <↑> or <↓> to scroll through the screens.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

System Manager SD Instructions
From any Main screen, press <SETPOINTS>. The screen below will appear because this option requires passcode clearance. Only a Level 2 passcode can change setpoints.

UNIT SELECTION
Enter Passcode: XXXX

If the correct passcode was entered, the Unit Selection Screen will be displayed.

Enter the Unit ID of the controller you wish to change schedules for and press <ENTER>. Once communication is established, the *00* message will go away. Then press <↑>.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

The following screen will be displayed:

Setpoint Screen #1 - Occupied Setpoints

XX Box Spts IDXXXX
Occupied Setpoints
Cooling......: XX°F
Heating......: XX°F

Enter the Occupied Cooling Setpoint as the maximum temperature you would like the zone to reach before modulating the damper open to bring in more cold air to cool the space. Enter the Occupied Heating Setpoint as the minimum temperature you would like the zone to reach before activating the Reheat Stages on the optional Expansion Relay board. If this is a Cooling Only box that doesn’t contain reheat, this setpoint will be ignored.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Setpoint</td>
<td>50°F</td>
<td>74°F</td>
<td>90°F</td>
</tr>
<tr>
<td>Heating Setpoint</td>
<td>50°F</td>
<td>70°F</td>
<td>90°F</td>
</tr>
</tbody>
</table>

Setpoint Screen #2 - Unoccupied Setbacks

XX Box Spts IDXXXX
Unoccupied Setbacks
Cooling SetUp: XX°F
Heating SetBk: XX°F

During unoccupied hours, the Occupied Cooling Setpoint is adjusted up by the amount entered for the Cooling SetUp. The Occupied Heating Setpoint is adjusted down by the amount entered for the Heating SetBk.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling SetUp</td>
<td>0°F</td>
<td>+10°F</td>
<td>+30°F</td>
</tr>
<tr>
<td>Heating SetBk</td>
<td>0°F</td>
<td>-10°F</td>
<td>-30°F</td>
</tr>
</tbody>
</table>
The VAV/Zone Controller normally opens its damper based on a Proportional Error from Setpoint. That means if the zone temperature is 4°F from setpoint, the damper would be 100% open, or it would be modulating to provide the Maximum CFM on Pressure Independent boxes. If the error is less than 4°F, the damper may stagnate at that position and never satisfy the zone. If you add Integral into the damper calculation process, this will cause the damper or airflow calculations to continue to increase as long as the zone temperature is still above the setpoint. That means it can provide 100% or Maximum CFM before the 4°F error is achieved, bringing the zone under control faster than it normally would. Start with a small (5 or 10) value, if you use this, and monitor the effect it has. If you enter too large a value, you can create “hunting” situations that can cause the damper actuator to prematurely wear out.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

The VAV/Zone Controller will not allow the damper or airflow calculation to exceed the Maximum setpoint while it is allowing the damper to modulate. During Vent mode when there is no heating or cooling demand, the damper or airflow will maintain at least the Vent Min amount of airflow into the zone for ventilation.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>0% or 0 CFM</td>
<td>100% or 1000 CFM</td>
<td>100% or 30000 CFM</td>
</tr>
<tr>
<td>Vent Min</td>
<td>0% or 0 CFM</td>
<td>25% or 250 CFM</td>
<td>100% or 30000 CFM</td>
</tr>
</tbody>
</table>

During Supply Air Cooling Mode, if the space being served by this damper is satisfied and has no cooling demand, the damper will close to this Cool Min setting. This provides a minimum amount of airflow into the space for ventilation, even if the space does not require additional cooling. During Supply Air Heating Mode, if the space being served by this damper is satisfied and has no heating demand, the damper will close to this Heat Min setting. This provides a minimum amount of airflow into the space for ventilation, even if the space does not require additional heating.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool Min</td>
<td>0% or 0 CFM</td>
<td>10% or 1000 CFM</td>
<td>100% or 30000 CFM</td>
</tr>
<tr>
<td>Heat Min</td>
<td>0% or 0 CFM</td>
<td>10% or 100 CFM</td>
<td>100% or 30000 CFM</td>
</tr>
</tbody>
</table>
VAV/ZONE CONTROLLER PROGRAMMING

VAV/Zone Setpoint Screens

Setpoint Screen #8 - Damper Airflow Night Min and Fan On Min

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Night Min:</td>
<td>0% or</td>
<td>0%</td>
<td>100% or</td>
</tr>
<tr>
<td>0 CFM</td>
<td>0 CFM</td>
<td>30000 CFM</td>
<td></td>
</tr>
<tr>
<td>Fan On Min:</td>
<td>0% or</td>
<td>25%</td>
<td>100% or</td>
</tr>
<tr>
<td>0 CFM</td>
<td>250 CFM</td>
<td>30000 CFM</td>
<td></td>
</tr>
</tbody>
</table>

The Night Min is the position the damper will move to when the system is in Override Mode and this particular damper is not part of the override group. This Night Min position only affects non-fan powered boxes. The Fan On Min is the minimum damper or airflow setting used to activate the parallel fan if installed. Pressure Independent = CFM. Pressure Dependent = %.

Setpoint Screen #9 - Damper Airflow Reheat Min

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reheat Min:</td>
<td>0% or</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>0 CFM</td>
<td>0 CFM</td>
<td>30000 CFM</td>
<td></td>
</tr>
</tbody>
</table>

The Reheat Min is the damper or airflow setting used during the Space Reheat Mode of operation.

Setpoint Screen #10 - Damper Airflow Fixed Position

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Pos:</td>
<td>0% or</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>0 CFM</td>
<td>0 CFM</td>
<td>30000 CFM</td>
<td></td>
</tr>
</tbody>
</table>

Many times while troubleshooting a system, it is useful to have the zone damper set to a specific damper position or airflow setting. This setpoint can be used to determine where the damper/airflow will remain when the VAV/Zone Controller receives a Force to Fixed Position command.

Setpoint Screen #11 - SAT HVAC Mode Deadband

If the supply air temperature is above the space temperature by this amount, the VAV/Zone Controller enters the Supply Air Heating Mode. It will remain in the Supply Air Heating Mode until the supply air drops to 2°F above the space temperature. At that point the unit enters the Supply Air Vent Mode and remains there until the supply air drops this deadband below the space temperature. At that point the VAV/Zone Controller enters the Supply Air Cooling Mode and will remain there until the supply air temperature rises to 2°F below the space temperature.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT HVAC Mode Deadband:</td>
<td>0ºF</td>
<td>10ºF</td>
<td>20ºF</td>
</tr>
</tbody>
</table>

Setpoint Screen #12 - Zone Alarm Offsets

The VAV/Zone Controller can be setup to generate an alarm anytime the box goes into the Occupied Mode and the Zone Temperature exceeds the user-defined alarm limits for a user-defined period of time. A High Temperature Alarm Setpoint is created by adding the Hi Zone Alarm offset to the current Cooling Setpoint. The Low Temperature Alarm Setpoint is created by adding the Lo Zone Alarm offset to the current Heating Setpoint. If the zone temperature exceeds either of these limits for a period defined by the Alarm Delay setpoint, the controller can generate an alarm callout if all the optional hardware components required for this to occur are installed.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hi Zone Alarm:</td>
<td>+1ºF</td>
<td>+30ºF</td>
<td>+50ºF</td>
</tr>
<tr>
<td>Lo Zone Alarm:</td>
<td>-1ºF</td>
<td>-30ºF</td>
<td>-50ºF</td>
</tr>
</tbody>
</table>

Setpoint Screen #13 - Zone Alarm Delay

As mentioned above, if you configure the controller to generate zone temperature alarms, this is the amount of time after the box goes into the Occupied Mode that the temperature must be outside the alarm limits before an alarm is generated.

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone Alarm Delay:</td>
<td>XXX Min</td>
<td>XXX Min</td>
<td>XXX Min</td>
</tr>
</tbody>
</table>
VAV/ZONE CONTROLLER PROGRAMMING

VAV/Zone Setpoint Screens

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out of Limits</td>
<td>1 Min</td>
<td>30 Min</td>
<td>300 Min</td>
</tr>
</tbody>
</table>

Setpoint Screen #14 - Day/Night Schedule

XX Box Spts IDXXXX
Day/Night Schedule
Control #: X
0=AHU 1-5=Scheduler

This screen allows you to set the VAV/Zone Controller to operate on a remote schedule instead of the schedule that is contained in the VCM Controller. Enter <0> to operate on the AHU schedule. Enter <1-5> to use an external schedule. A GPC Plus is required for schedules 1-5.

Setpoint Screen #15 - Maximum Slide Offset

XX Box Spts IDXXXX
Maximum Slide Offset
Effect on Spt.: X°F

If the Flush Mount Wall Sensor has the optional Setpoint Slide Adjust, this is the maximum amount you can adjust the heating and cooling setpoints up or down as the slide is moved from the center position to its full up or down position.

Setpoint Screen #16 - Push-Button Override Duration

XX Box Spts IDXXXX
Push-Button Override
Duration : X.X Hr

If the Flush Mount Wall Sensor has the optional Push-Button Override, this is the amount of the VAV/Zone Controller will resume using its Occupied Setpoints during unoccupied mode. This will generate a call for the Air Handler to start its fan and provide heating or cooling, depending on how you configure the Air Handler.

Setpoint Screen #17 - Maximum EMS Offset

XX Box Spts IDXXXX
Maximum EMS Setpoint Offset...: XX°F

If the Energy Management System (EMS) is activated, the heat and cool setpoints can be spread apart by this amount.

Setpoint Screen #18 - Sensor Calibration for Space Temp and Supply Air Temp

Sensor Calibration
SPC: XXX.X° XXX.X°
SAT: XXX.X° XXX.X°
[SAT Only if Sensor]

The Thermistor Type III sensor readings can be calibrated. Enter a Positive value to increase a reading and a Negative value to decrease a reading.

NOTE: The Supply Air Temperature calibration offset only operates on the reading when the VAV/Zone Controller has its own Supply Air Temperature sensor installed on the AUX2 input. If the supply temperature is received from a global broadcast, you will need to go to the air handler to calibrate the temperature reading.
VAV/Zone Status Screens

VAV/Zone Status

Status Screen #1 - Mode of Operation

Line 2

- Unoccupied Mode
- Occupied Mode
- Override Mode
- Override Pending*
- Damper Calibration
- Group Override

Line 3

- OFF Mode
- Vent Mode
- Cooling Mode
- Heating Mode
- Sensor Fail Mode**

Line 4

- Belongs to Group # xx
- No Group Affiliation

* Not displayed when using a Digital Room Sensor.
** Displays for either a temperature sensor failure or an airflow sensor failure.

Status Screen #2 - Zone Temperature and Cooling/Heating Setpoints

Line 2

- Current Zone Temperature

Line 3

- Currently active Cooling Setpoint based on the current Occupied / Unoccupied mode of operation.

Line 4

- Currently active Heating Setpoint based on the current Occupied / Unoccupied mode of operation.

Status Screen #3 - Slide Offset & H/C Demand

Line 2

- If the optional Setpoint Slide Adjust is installed on the Flush Mount Wall Sensor, this line will display the current amount the Slide Offset is affecting the Heating and Cooling Setpoints.

Line 3

- Current Heating or Cooling Demand in the Zone based on the current Heating and Cooling Setpoints when compared to the current Zone Temperature.

Line 4

- Blank

Status Screen #4 - Supply Air Temperature & Box Air Temperature

Line 2

- Current Supply Air Temperature received via broadcast from the DX Air Handler or from the Box Controller’s own installed Box Air Temperature Sensor connected to the AUX input of the VAV/Zone Controller board.

Line 3

- Current Box Air Temperature

If you have configured the VCM Controller to broadcast the Supply Air Temperature to the VAV/Zone Controller and don’t have a Box Air Temperature Sensor attached to the AUX input on the VAV/Zone Controller board, this line will display the Supply Air Temperature the same as line 2.

If you have a Box Air Temperature Sensor attached to the AUX input on the VAV/Zone Controller board, this line will display the Box Air Temperature at the location where the Box Air Temperature Sensor is installed.

Line 4

- Blank
VAV/ZONE DAMPER FORCE

VAV/Zone Status Screens

Status Screen #5 - Zone Damper Position, Airflow, and Desired CFM

- **XX Box v4.01 IDXXXX**
- **Damper FRC:** XXX %
- **Airflow:** XXXX CFM
- **Desired:** XXXX CFM

Line 2
Current Zone Damper Position
If you entered a FORCE command, the letters FRC will appear. If this is normal damper operation, the FRC will not be displayed.

Line 3
If this is a Pressure Independent box, the current Airflow will be displayed. If not, this line will display the desired damper position.

Line 4
If this is a Pressure Independent box, this line will display the Desired CFM the box would like to provide to the zone. If not, this line will display [Controls to +/- 3%] to indicate how accurately the damper will maintain the desired position.

Status Screen #6 - Fan Status & Reheat Stages

- **XX Box v1.04 IDXXXX**
- **Fan Status:** OFF
- **Heating Relay#1:** OFF
- **Heating Relay#2:** OFF

Line 2
If this is a Fan Powered box, this line will display the Fan On/Off Status. On non-fan powered boxes, this line will display [Exp Relay 1 Not Used].

Line 3
If your VAV/Zone Controller has been configured to control reheat stages, this line reflects the On/Off Status of the first stage of Reheat. If you have 3 stages of reheat, this line will display the total number of active heating stages.

Examples:
- “1 Reheat Stages On” or
- “2 Reheat Stages On” or
- “3 Reheat Stages On”

If proportional heating is used (you have no relays configured for heat), this line will display “Heating Signal: xxx %”.

Line 4
If your VAV/Zone Controller has been configured to control reheat stages, this line reflects the On/Off Status of the second stage of Reheat. If you have 3 stages of reheat as explained on line 2, this line will be blank.

Status Screen #7 - Alarm Status

- **XX Box v1.04 IDXXXX**
 - **NO ALARMS!**

- **XX Box v1.04 IDXXXX**
 - **ALARMS PRESENT**
 - **SCROLL DOWN TO VIEW**

Line 2
Blank

Line 3
NO ALARMS!

If there are one or more alarms active, the possible messages are shown below:
- SPACE SENSOR FAILURE
- CFM SENSOR FAILURE
- DAMPER OPENING ALARM
- DAMPER CLOSING ALARM
- HI SPACE TEMP ALARM
- LO SPACE TEMP ALARM
- DPR FEEDBACK FAILURE

Line 4
Blank

Press < > to scroll through all active alarms.

For Alarm Definitions, see the *VCM Controller Technical Guide.*
VAV/ZONE DAMPER FORCE

VAV/Zone Damper Force Modes

Damper Force Modes

Damper Force Modes are available for testing or balancing the system. These Force Modes can be accessed and programmed from either the System Manager or Modular Service Tool.

Modular Service Tool Instructions

When using the Modular Service Tool, simply press the `<BALANCE-TEST>` key. You will then see the *Unit ID Screen*. Enter the unit ID of the controller you wish to access and press `<ENTER>`. Once communication is established, the *00* message will go away. Then press `<>`.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

The following screen will be displayed:

```
Damper Force Para Blocks Load / Save / Copy
```

With the cursor on Damper Force, press `<ENTER>` to access the Damper Force Mode Screen.

Dampers Force Mode Screen

If the unit ID you entered is for a VCM Controller that has VAV/Zone Controllers connected to its communication loop, the Damper Force Mode will act as a “Global” Damper Force Mode. That is, all VAV/Zone Controllers on that VCM Controller’s communication loop will be forced to the same Damper Force Mode setting. If the unit ID you entered is for a VAV/Zone Controller, the Damper Force Mode setting will only apply to that VAV/Zone Controller.

```
Damper Force Enter Force Mode: 0
0=Auto 1=Open 2=Clsd 3=Max 4=Min 5=Fixed
```

Set the appropriate Damper Force Mode by entering numbers 0 through 5. Following is a list of the force modes and their meaning:

- **0 = Auto**: This is the default setpoint. With this setting, the damper will operate normally and modulate according to the controller setpoints.
- **1 = Open**: This setting will force the dampers to their fully-open position.
- **2 = Clsd**: This setting will force the damper to its fully-closed position.
- **3 = Max**: This setting will force the damper to its Maximum Position Setpoint. See *VAV/Zone Controller Setpoint Screen #5* on *page 57* for complete setpoint information.
- **4 = Min**: This setting will force the damper to its Minimum Position Setpoint. See *VAV/Zone Controller Setpoint Screen #5* on *page 57* for complete setpoint information.
- **5 = Fixed**: This setting will force the damper to a fixed position based on the Fixed Position Setpoint. See *VAV/Zone Controller Setpoint Screen #8* on *page 58* for complete setpoint information.

CAUTION: The Damper Force Modes should only be used by qualified service personnel. Serious damage to the ductwork could result if the dampers are all forced closed and the HVAC unit fan is operating.
MiniLink PD Configuration

In order to correctly setup the MiniLink PD, you must first configure several parameters in regard to the type of system and operating parameters for the system it is installed on. Most of these values and operating parameters are only set once at the initial system setup and are never changed.

Modular Service Tool Instructions

From any menu screen, press `<SETPOINTS>`. The Unit Selection Screen, shown below, will appear requesting that you enter the unit ID number.

```
Unit Selection*00*
Enter Unit ID#
Selected ID#: XXXX
```

All MiniLink PDs are set at address 60. Enter the correct unit loop number for the loop the MiniLink Polling Device is connected to (for Loop 1 you would enter `<160>` and press `<ENTER>`). Once communication is established, the *00* message will go away. Then press `<ù>`.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

You will then see Setpoint Screen #1. Press `<ENTER>` to save entered data and press `<ù>` to scroll through the screens.

System Manager SD Instructions

From any Main screen, press `<SETPOINTS>`. The screen below will appear because this option requires passcode clearance. Only a Level 2 passcode can change setpoints.

```
THIS ACTION REQUIRES PASSCODE CLEARANCE
Enter Passcode: XXXX
```

If the correct passcode was entered, the Unit Selection Screen will be displayed.

```
Unit Selection*00*
Enter Unit ID#
Selected ID#: XXXX
```

Enter the Unit ID of the controller you wish to change schedules for and press `<ENTER>`. Once communication is established, the *00* message will go away. Then press `<ù>`.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

The following screen will be displayed:

```
Change Setpoints
Configure Unit
Save/Copy/Restore
```

Scroll to the ‘Change Setpoints’ option and press `<ENTER>`. This will take you to the first Setpoints Screen shown below.

Configuration Screen #1 - System Type

```
Polling Unit Config
System Type Selection: ZONING
Use < Or > To Change
```

Select VAV or ZONING. This screen allows you to select whether you want the system to behave as a VAV system or a Zoning System. If you select VAV, this will allow tenant logging for your VAV system.

Configuration Screen #2 - Last Polled Zone

```
Polling Unit Config
Last Polled Zone
Address: XX
[Enter Last Zone]
```

This zone is the last zone on the local loop of your zoning system that is to be included in zone voting. Valid entry is 1 to 25.

Configuration Screen #3 - Mode Changeover Time

```
Polling Unit Config
Mode Changeover Time
Minutes: XX
[Enter Period Time]
```

This is the amount of time that you want to allow between changeover from heating to cooling modes. Valid entry is 5 to 60 minutes.
Configuration Screen #4 - Optimal Start

Target Zone

```
Polling Unit Config
Optimal Start
Target Zone..: XX
[Enter Target Zone]
```

This is the unit ID of the Zone that you want to be satisfied by the normally scheduled start time. If you enter “-1” into this box, it will average all zones instead of picking a specific zone. If you do not require Optimal Start, enter “0”. Valid entry is -1 to 58.

Configuration Screen #5 - Maverick Testing

```
Polling Unit Config
Maverick Testing
Disabled: YES
Use < Or > To Change
```

Select YES or NO. Disabling the Maverick Testing allows known troubled zone(s) to continue voting without causing a Maverick alarm. In other words, all zones are included in the voting regardless of whether they are more than four degrees from setpoint.

Configuration Screens #6-65 - Alarm Polling

```
Polling Unit Config
Enable Alarm Polling
Unit XX: YES
Use < Or > To Change
```

Select YES or NO. Enabling Alarm Polling allows any alarm from the loop to be polled. You must set this for each controller on the loop.
Outputs Force

Outputs Force settings are available for testing or troubleshooting the system. These Force settings can only be accessed and programmed from the Modular Service Tool. The System Manager does not allow for programming of this function.

CAUTION: The Outputs Force settings should only be applied by qualified service personnel. Serious damage to the HVAC unit could result from improper use of these Outputs Force settings.

To access the Outputs Force settings, simply press the `<BALANCE - TEST>` button on the Modular Service Tool SD. You will then see the Unit ID Screen.

Enter the unit ID of the Unit Controller you wish to access and press `<ENTER>`. Once communication is established, the *00* message will go away. Then press `<↓>`. You will then see the screen shown below. Press `<ENTER>` to save entered data and press `<↓>` to scroll through the screens.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

NOTE: The Outputs Force settings are only available for the VAV/CAV/MUA II Controller. They are not supported for the VAV/Zone Controllers or other Add-on controllers.

Place the cursor on Outputs Force and press `<ENTER>` to access the Outputs Force Screen.

The first Outputs Force Screen allows the AHU fan relay to be set for Auto, Force On, or Force Off. The default setting is Auto. After you complete all troubleshooting or testing procedures, all relays should be changed back to this setting. The Force On setting will force the relay to the ON (energized) position. The Force Off selection will force the relay to the OFF (de-energized) position.
APPENDIX A - SAVE, LOAD, COPY SETPOINTS

Saving & Copying Setpoints

Modular Service Tool Instructions
From any menu screen, press <BALANCE-TEST>. The Unit Selection Screen will appear requesting that you enter the unit ID number.

Enter the network unit ID for the controller you want to save the setpoints from. Example, ‘102’ for Loop 1 / Unit 2. Then press <ENTER>. Once communication is established, the *00* message will go away. After a brief pause, press <↓> to get to the Balance - Test Screen shown below.

System Manager SD Instructions
From any Main screen, press <SETPOINTS>. The screen below will appear because this option requires passcode clearance. Only a Level 2 passcode can change setpoints.

NOTE: If the *00* remains, it indicates a communication failure to the controller.

The following screen will be displayed:

Scroll down to the ‘Save/Copy/Restore’ option and press <ENTER>. This will take you to the Save Setpoints screen.

Save Setpoints - Network Mode
From the Save Setpoints Screen shown below:

Press <ENTER> and a setpoint file will be saved to the SD card. You will receive a message that the save was successful. This file is specific to this controller on this loop.
Copy Setpoints - Network Mode

To copy a saved setpoints file to other controllers on the network do the following:

From the Save Setpoints Screen shown below:

```
Save Setpoints
Press Enter To Save
```

Press <↓> once to access the Copy Setpoints Screen shown below.

```
Copy Setpoints
From Loop 1
From Unit 2
Press Enter to Copy
```

In the ‘From Loop’ field, enter the Loop of the controller you want to copy the setpoints from. In this example it is ‘1’. Then press <ENTER>.

In the ‘From Unit’ field, enter the Unit ID of the controller you want to copy the setpoints from. In this example it is ‘2’. Then press <ENTER>.

Now your cursor will be on the last line, and you can press <ENTER> once more to copy the setpoint file from unit 102 to unit 103.

You will receive a confirmation that the copy was successful.

Restoring Setpoints - Network or Stand-Alone Mode

The Restore Setpoints feature is used to reload a saved setpoints file from one controller back to itself. This could be useful if setpoints or configurations were changed and need to be reset.

You can perform this function on a networked system; however, the Modular Service Tool needs to be directly connected to the controller you wish to restore previously saved setpoints to.

From the Save Setpoints Screen shown below:

```
Save Setpoints
Press Enter To Save
```

Press <↓> four times to access the Restore Setpoints Screen shown below.

```
Restore Setpoints
Press Enter To Load
```

Press <ENTER>. This will reload the setpoints from the saved file. You will receive confirmation that the setpoints were loaded successfully.

Save & Copy Setpoints - Stand-Alone Mode

The instructions for Stand-Alone Mode are exactly the same as Network Mode, except that there is no need to enter a Loop number in the Unit ID number field and in the Copy Setpoints Screen, enter a zero in the ‘From Loop’ field.
APPENDIX B - UPDATING THE SD CARD

SD Memory Card Update

Updating Your SD Memory Card

You may need to update your SD memory card from time to time, either for a new release or to add data for another Controller.

Follow the instructions below to download the update file from our tech support webpage:

1. Insert the SD memory card in your computer’s SD drive and open the drive’s window.
2. Open your browser and type in the address: http://wattmaster.com/techsupport.
3. On the Tech Support webpage, locate the file for the Modular Service Tool SD update and double-click your mouse on it.
4. Click <Save File> when asked to save or open the file and then click <OK>. This option will save the file to the “Downloads” folder on your PC.
5. Open the “Downloads” folder in Windows Explorer. You will find a folder labeled, “Modular_HH_Screens.zip.” Right-click on this folder and choose “Extract All” from the options list. NOTE: Any compression software can be used to extract the zip folder’s contents, for example, Winzip.
6. Once you unzip the file, you will see a window similar to the one below.

![Extracted file window](image)

7. Press <CTRL> <A> to highlight the folders in the window—App, Manuals & Scr. Press <CTRL> <C> to copy the folders.
8. Paste the files into the SD memory card drive’s window by pressing <CTRL> <V>.
9. Remove the SD Memory Card from your computer and reinsert it in the Modular Hand Held Service Tool.
Updating Software Using the Modular Service Tool SD

To update the software for various WattMaster controllers and E-BUS Modules, follow these simple steps.

1. Update your SD memory card with the new software file for the controller or E-BUS module you need to update. Follow the steps on page 68 for Updating your SD memory card.

2. Connect the Modular Service Tool to the device you wish to update using the EBC E-BUS cable provided.

3. Power up the controller or E-BUS module you wish to update.

4. Apply power to the Modular Service Tool SD and press the <ON> button.

5. After initialization of the Modular Service Tool SD, press <NEXT> at the first Main Menu and <4> at the second Main Menu shown below.

 1) Set Time & Date
 2) Communications
 NEXT) More Options
 ESC) Exit Menu

 3) Energy Saving
 4) Update Software
 NEXT) More Options
 ESC) Exit Menu

6. The Update Software Screen will appear as shown below:

 Select Communication
 1) WattMaster Comm
 2) E-BUS Module
 ESC) Exit Menu

7. Follow the instructions for WattMaster Controllers or E-BUS Modules.

WattMaster Controllers

1. Press <1> to update a WattMaster Controller. The following screen will appear:

 Enter Board Address
 0
 Esc) Exit Menu

2. Enter the address of the controller you are updating and then press <ENTER>.

3. The Software Version Screen will appear as shown below. Enter <0> for the latest software version or enter the number of an older version given to you by Technical Support. Then press <ENTER>.

 Software Version
 Enter 0 for Latest
 0
 Esc) Exit Menu

4. The screen will display the following messages: “Resetting Unit” “Load Sys Info”

5. If communications are successful, the screen will display, the name of the HEX file on the top line, “Flash Memory Erased” on the second line, and the progress percentage on the third line.

 NOTE: If communications are not successful, the screen will display, “Press Any Key to Continue. Cannot Load Sys Info.” Make sure you have the right address and the right software version on your SD card. If these two items are correct and you still experience a problem, contact Technical Support.

6. When updating is complete, the screen will display, “Finish Download.”
E-BUS Modules

1. Press `<2>` to update an E-BUS Module. The following screen will appear:

```
Enter Board Address
0
Esc) Exit Menu
```

2. Enter the address of the E-BUS module you are updating and then press `<ENTER>`. The following is the list of Module addresses:

WSHP-X - address 17
MHGRV-X - address 132
MODGAS-X - address 138

3. The Software Version Screen will appear as shown below. Enter `<0>` for the latest software version or enter the number of an older version if given to you by Technical Support. Then press `<ENTER>`.

```
Software Version
Enter 0 for Latest
0
Esc) Exit Menu
```

4. The screen will display the following messages:
 “Resetting Unit”
 “Load Sys Info”

5. If communications are successful, the screen will display, the name of the HEX file on the top line, “Flash Memory Erased” on the second line, and the progress percentage on the third line.

 NOTE: If communications are not successful, the screen will display, “Press Any Key to Continue. Cannot Load Sys Info.” Make sure you have the right address and the right software version on your SD card. If these two items are correct and you still experience a problem, contact Technical Support.

6. When updating is complete, the screen will display, “Finish Download.”
24-Hour Military Format........14,22
1111........19
2222........19
2359........14,22

A

AHU Heat Call Space Temperature, VAV/Zone........57
Airflow, VAV/Zone Status........61
Air to Air Heat Pump Control........27
Alarm Limits........47
Alarm Relay........29
Alarms
 Button........10,16
 Clearing......13,21
 Fan Proving......41
 MiniLink Polling......20,64
 Modular Service Tool......13
 VAV/Zone Status........61
Alarm Status
 Bad Space Temp......41
 Dirty Filter Alarm......41
 High Control Temp......41
 Low Control Temp......41
 Mech Cool Alarm......41
 Mech Heat Alarm......41
 MUA II Controller......52
 VAV/CAV Controller......41
Arrow Keys, Defined........10,12,16,18
Auto Damper Force Mode........62
Automatic Power Down........12

B

Bad Space Temp Alarm........41
Balance-Test Button, Defined........10
Box Air Temperature, VAV/Zone Status........60
Box Configuration, VAV/Zone........53
Box Heat Allow, VAV/Zone........54
Broadcast Fan & Heat Status........28
Broadcast Humidity Reading........28,44
Broadcast Internal Schedule........28
Broadcast Outdoor Temperature........27,43
Broadcast Supply Temperature........28
Broadcast Time Clock to All Loop Units........27
Broadcast VAV Boxes Force to Fixed........28
Broadcast VAV Boxes Force to Max........28
Building Pressure Deadband........34
Building Pressure Setpoint........34
Building Pressure Status, VAV/CAV Controller........40

C

Change Passcodes........19
Clear Alarms........13,21
Clear Key, Defined........10,16
Closed, Damper Force Mode........62
CO₂
 Protection Limit Max Level........35
 Protection Limit Reset Range........35
CO₂ Level, VAV/CAV Controller........39
CO₂ Protection Limit Setpoint........35
CO₂ Sensor Installed........27
CO₂ Sensor Maximum Reading........27
Communications Screen........12,18
Configuration........53
 Button........10
 Econoimizer Control........26
 Fan Cycle Control........26
 Outdoor Air Humidity Sensor........26
 Screen Index........42
Configuration Screen Index, MUA II Controller........42
Connection Diagram, Modular Service Tool........5
Constant Volume Mode Active Screen........25
Continuous OFF Mode........14,22
Continuous ON Mode........14,22
Controlling Sensor........25
Cool/Heat Stage Delays........37,48
Cooling Deadband........46
Cooling & Heating Lockouts Setpoints........32
Cooling Min Off Time........37,48
Cooling Min Run Time........37,48
Cooling Mode Status, MUA II Controller........51
Cooling Only Box, VAV/Zone........53
Cooling Setpoints........31
VAV/Zone Status........60
Cooling Status, VAV/CAV Controller........39
Cooling Supply Control Deadband........32
Cool Stage Relay........29,44
Cool Total, MiniLink PD Status........64
Copy Setpoints........67
Current Active Return Air Setpoint, VAV/CAV Controller........40
Current Active Supply Air Setpoint, VAV/CAV Controller........40
Current Cooling Setpoint, MUA II Controller........51
Current Dewpoint Setpoint, MUA II Controller........51
Current Outdoor Air Dewpoint, MUA II Controller........51
Current Outdoor Air Enthalpy, MUA II Controller........51
Current Outdoor Air Temperature, MUA II Controller........51
Current Reset Humidity Reading, MUA II Controller........52
Current Reset Temperature, MUA II Controller........52
Current Supply Air Temperature, VAV/CAV Controller........40
Current Supply Air Temperature Status, MUA II Controller........51
Cutoff Temperature Setpoints........33
D

Damper Airflow
 Cool/Heat Minimum.........57
 Fan On Min.........58
 Fixed Position.........58
 Integral.........57
 Maximum.........57
 Night Minimum.........58
 Reheat Minimum.........58
 Vent Minimum.........57
Damper Force Modes.........62
Damper Operation, VAV/Zone.........53
Dampers Forced Closed.........62
Data Entry Keys, Described.........10,16
Date, Programming.........11,17
Day/Night Schedule, VAV/Zone.........59
DEC Key, Defined.........10,16
Dehumidification Control Screen.........26,43
Dehumidification Heat Delay.........46
Desired CFM, VAV/Zone Status.........61
Dewpoint Reset.........48
Dewpoint Setpoint.........48
Dewpoint Setpoint Status, MUA II Controller.........51
Dimensions
 Modular Service Tool.........4
 System Manager.........6
Dirty Filter Alarm.........41
Display Screen, Described.........10,16
Dump Zone, VAV/Zone.........55

E

Economizer
 OAT/WB Enable Setpoint.........33
 Overrides.........65
Economizer Control Rate.........34
Economizer Control Screen.........26
Economizer Maximum Position if High CO₂ Level.........35
Economizer Minimum Position.........34
Economizer Relay.........29
Economizer Status, VAV/CAV Controller.........39
Energy Saving Timer.........12
Enter
 Key.........10,16
 New Passcode.........19
Enthalpy Deadband.........46
Enthalpy Deadband, Current, MUA II Controller.........51
Enthalpy Hysteresis.........46
Enthalpy Setpoint, Current, MUA II Controller.........51
Enthalpy Staging.........46
Enthalpy Staging - Deadband and Hysteresis.........46
ESC Key, Defined.........10,16
Exhaust Fan Relay.........29,44
Exhaust, VFD Override.........65
Expansion Relays Heating Stages, VAV/Zone.........54
External Heat Output %, MUA II Controller.........52
External Heat, Output Range.........43
External Heat Relay.........44
External Heat, Reverse Acting.........43

F

Fan Cycle Control Screen.........26
Fan On Min.........58
Fan Proving Alarm.........41
Fan Status.........61
Fan VFD Signal Percentage Current, VAV/CAV Controller.........40
Fixed Damper Force Mode.........62
Fixed Position, Damper Airflow.........58
Free Cooling.........33
Gas Re-Heat Relay.........29,44

G

H/C Changeover Box, VAV/Zone.........53
Heat Delay During Dehumidification.........46
Heat, External Heat, Reverse Acting.........43
Heat In Dehumidify Control.........43
Heating
 Min Off Time.........37,48
 Min Run Time.........37,48
 Setpoints.........60
 Stage Down.........37,48
 Stage Up.........37,48
Heating / Cooling Demand, VAV/CAV Controller.........39
Heating/Cooling Demand, VAV/Zone Status.........60
Heating/Cooling Supply Control Deadband.........32
Heating Deadband.........46
Heating Mode Status, MUA II Controller.........51
Heating Setpoints.........31
Heating Setpoint, SAT.........32
Heating Status, VAV/CAV Controller.........39
Heat Pump Auxiliary Heating Delay.........36
Heat Stage Relay.........29,44
Heat Total, MiniLink PD Status.........64
High Control Temp Alarm.........41
High Cutoff Temperature.........33
High SAT Limit.........47
Hi SAT Cutoff.........33
Holidays
 Programming.........14
 Start/Stop Times.........15,23
Humidity Reading, MUA II Controller.........52
HVAC Mode
 - Cooling Setpoints.........31
 - Heating Setpoints.........31
 - Schedule Setpoint.........49
 - Select Deadband Setpoint.........32
 - Sensor Slide Offset Setpoint.........49
HVAC Mode Sensor Slide Offset Setpoint.........36
HVAC Mode Setpoints.........31
HVAC Mode Status, MUA II Controller.........51
HVAC Schedule Setpoint.........35
Hysteresis.........46

I
Initialization Screen.........11,17
Internal Schedule Optimal Start Soak Multiplier.........36

K
Keys, Described.........10,16

L
Last Polled Zone, MiniLink PD.........63
Level 1 User, Defined.........19
Level 2 User, Defined.........19
Local Analog Value Controlling Sensor.........25
Loop Search.........20
Lo SAT Cutoff.........33
Low Control Temp Alarm.........41
Low Cutoff Temperature.........33
Low SAT Limit.........47

M
Main Fan Status, VAV/Zone.........54
Maverick Testing, MiniLink PD.........64
Maximum
 - Damper Force Mode.........62
 - EMS Offset VAV/Zone.........59
 - Slide Offset VAV/Zone.........59
Mechanical Heat/Cool Failure Time Period Setpoint.........35
Mech Cool Alarm.........41
Mech Heat Alarm.........41
MHGRV Output %, MUA II Controller.........52
MHGRV Output % Status, VAV/CAV Controller.........41
Min Damper Force Mode.........62
MiniLink PD Configuration.........63
 - Alarm Polling.........64
 - Last Polled Zone.........63
 - Maverick Testing.........64
 - Mode Changeover Time.........63
 - Optimal Start Target Zone.........64
 - System Type.........63

MiniLink PD Status
 - Adding Additional.........20
 - Cool Total.........64
 - Heat Total.........64
 - Minutes Left.........64
 - Mode Priority.........64
 - Schedule Mode.........64
 - System Status.........64
Minimum Run Times and Off Times.........37,48
Minus Key, Defined.........10,16
Minutes Left, MiniLink PD Status.........64
Mod Heating Override.........65
Mode
 - Changeover Time.........63
 - of Operation.........12,18,60
 - Priority.........64
 - Selection Buttons Defined.........10,16
 - VAV/CAV Status Screen.........39
Mode Cooling Setpoint Status, VAV/CAV Controller.........39
Mode Enable Temperature Status, VAV/CAV Controller.........39
Mode Heating Setpoint Status, VAV/CAV Controller.........39
MODGAS Output %, MUA II Controller.........52
MODGAS Output % Status, VAV/CAV Controller.........41
Modular Service Tool
 - Alarms Button.........13
 - Alarm Search.........13
 - Connection Diagram.........4
 - Defined.........4
 - Dimensions.........4
 - Energy Saving Timer.........12
 - Initialization Screen.........11,17
 - Instructions.........31
 - Mode Selection Buttons...........10,16
 - Override Search.........13
 - Overrides Tool.........13
 - VAV/CAV Setpoints.........31
Modular System Manager
 - Connection Diagram.........7
 - Defined.........6
 - Dimensions.........6
 - Network Connection.........7
 - Stand-Alone Connection.........9
Month.........11,17
Morning Warm Up.........32
MUA II Controller
 - Alarm Conditions.........52
 - Configuration Screens.........43
 - Outputs Force.........65
 - Relay Overrides.........65
 - Relay Status.........52
 - Status Screens.........51
MUA II Controller Configuration Screen Index.........42
MUA II Controller Status Screen Index.........50
MUA II Setpoint Index.........45
MUA II Status Screen Index.........50
Multiple MGRS.........18
INDEX

N
Network Connection, Modular System Manager........7
Night Minimum Damper Airflow..........58

O
OAT Sensor Calibration........49
Occupied
 Mode........15,23
 Setpoints........56
Occupied Relay........29
OE391-12........4
OE392-12........6
OFF Mode, Continuous........14,22
ON Mode, Continuous........14,22
Open Damper Force Mode........62
Optimal Start Soak Multiplier........36
Optimal Start Target Zone, MiniLink PD........64
Outdoor Air Controlling Sensor........25
Outdoor Air Dewpoint, MUA II Controller........51
Outdoor Air Enthalpy Status, MUA II Controller........51
Outdoor Air Humidity Sensor Installed........26,43
Outdoor Air Lockouts........32
Outdoor Air Relative Humidity, VAV/CAV Controller........40
Outdoor Air Temperature, VAV/CAV Controller........40
Outdoor Air Temperature Status, MUA II Controller........51
Outdoor RH Current, MUA II Controller........51
Outputs Force........65
Override Relay........29
Overrides
 Button........10,16
 Screen........13,21
 Search........13,21

P
Parallel Fan Box, VAV/Zone........53
Passcode
 1111........19
 2222........19
 Clearance........18
 Codes........19
 Enter New........19
 System Manager........19
Power/Comm Board Wiring........8
Power Down........12
Pre-Heater Relay........29,44
Pressure Independent Airflow Constant, VAV/Zone........54
Programming
 Date........11,17
 Day of Week........11,17
 Holidays........14
 Holiday Start/Stop Times........15,23
 Month........11,17
 Time & Date........11,17
 Year........11,17
Proof of Flow Switch Installed........26,43
Proportional Heating Signal, VAV/Zone........54
Push-Button Override
 Duration........59
 Duration Setpoint........48
 VAV/Zone........54
Push-Button Override Duration Setpoint........36

R
Real Time Clock........11,17
Reheat, Stages........61
Reheat - Dewpoint Control Setpoint........46
Reheat Minimum, Damper Airflow........58
Relative Humidity........48
Relay
 Configuration Screens........44
 Reversing Valve........44
Relay Configuration Screens........29
Relays
 Alarm Relay........29
 Cool Stage........29,44
 Economizer........29
 Exhaust Fan........29,44
 External Heat........44
 Gas Re-Heat........29,44
 Heat Stage........29,44
 Occupied........29
 Override........29
 Pre-Heater........29,44
 Rev Valve........29
 Warm-up Mode........29
 Warmup Mode........44
Relay Status, MUA II Controller........52
Relief Setpoint........34
Relief VFD Status, VAV/CAV Controller........40
Remote Signal Contact........14,22
Reset Cooling Mode Supply Setpoint........27
Reset Humidity Reading........52
Reset Offset, SAT........32
Reset Source, Cooling Setpoint........32
Reset Temperature, Current........52
Restore Setpoints........67
Return Air Controlling Sensor........25
Reverse Acting Building Pressure Control........26
Reverse Acting External Heat........43
Reversing Valve Relay........44
Rev Valve Relay........29

S
SAT Cooling Setpoint........32
SAT Cool Reset........34
SAT Heating Setpoint........32
SAT High Reset........34
SAT Reset Limit........32
<table>
<thead>
<tr>
<th>Screen</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT Reset Offset</td>
<td>32</td>
</tr>
<tr>
<td>SAT Sensor Calibration</td>
<td>49</td>
</tr>
<tr>
<td>Schedule</td>
<td>Button</td>
</tr>
<tr>
<td></td>
<td>Mode</td>
</tr>
<tr>
<td></td>
<td>Override</td>
</tr>
<tr>
<td></td>
<td>Time & Date</td>
</tr>
<tr>
<td>Scheduling, Controller</td>
<td>14, 22</td>
</tr>
<tr>
<td></td>
<td>Air to Air Heat Pump Control</td>
</tr>
<tr>
<td></td>
<td>Alarm Limits</td>
</tr>
<tr>
<td></td>
<td>Broadcast Fan & Heat Status</td>
</tr>
<tr>
<td></td>
<td>Broadcast Humidity Reading</td>
</tr>
<tr>
<td></td>
<td>Broadcast Internal Schedule</td>
</tr>
<tr>
<td></td>
<td>Broadcast Outdoor Temperature</td>
</tr>
<tr>
<td></td>
<td>Broadcast Supply Temperature</td>
</tr>
<tr>
<td></td>
<td>Broadcast Time Clock to All Loop Units</td>
</tr>
<tr>
<td></td>
<td>Broadcast VAV Boxes Force to Max</td>
</tr>
<tr>
<td></td>
<td>Building Pressure Control</td>
</tr>
<tr>
<td></td>
<td>Building Pressure Setpoint</td>
</tr>
<tr>
<td></td>
<td>CO₂ Protection Limit Setpoint</td>
</tr>
<tr>
<td></td>
<td>CO₂ Sensor Installed</td>
</tr>
<tr>
<td></td>
<td>CO₂ Sensor Maximum Reading</td>
</tr>
<tr>
<td></td>
<td>Communications Screen</td>
</tr>
<tr>
<td></td>
<td>Configuration Screens</td>
</tr>
<tr>
<td></td>
<td>Constant Volume Mode Active</td>
</tr>
<tr>
<td></td>
<td>Controlling Sensor</td>
</tr>
<tr>
<td></td>
<td>Cool/Heat Stage Delays</td>
</tr>
<tr>
<td></td>
<td>Cutoff Temperature Setpoints</td>
</tr>
<tr>
<td></td>
<td>Dehumidification Control Screens</td>
</tr>
<tr>
<td></td>
<td>Dewpoint Reset</td>
</tr>
<tr>
<td></td>
<td>Economizer Control</td>
</tr>
<tr>
<td></td>
<td>Economizer Maximum Position if High CO₂ Level Setpoint</td>
</tr>
<tr>
<td></td>
<td>Economizer Minimum Position & Control Rate Setpoints</td>
</tr>
<tr>
<td></td>
<td>Economizer OAT/WB Enable Setpoint</td>
</tr>
<tr>
<td></td>
<td>Economizer Overrides</td>
</tr>
<tr>
<td></td>
<td>Enthalpy Staging - Deadband and Hysteresis</td>
</tr>
<tr>
<td></td>
<td>Exhaust VFD Override</td>
</tr>
<tr>
<td></td>
<td>External Heat Output Range</td>
</tr>
<tr>
<td></td>
<td>External Heat, Reverse Acting</td>
</tr>
<tr>
<td></td>
<td>Heat Delay During Dehumidification</td>
</tr>
<tr>
<td></td>
<td>Heat In Dehumidify Control</td>
</tr>
<tr>
<td></td>
<td>Heating/Cooling Supply Control Deadband</td>
</tr>
<tr>
<td></td>
<td>Heat Pump Auxiliary Heating Delay</td>
</tr>
<tr>
<td></td>
<td>Holiday Schedule</td>
</tr>
<tr>
<td></td>
<td>HVAC Mode Select Deadband Setpoints</td>
</tr>
<tr>
<td></td>
<td>HVAC Mode Sensor Slide Offset Setpoint</td>
</tr>
<tr>
<td></td>
<td>HVAC Mode Setpoints</td>
</tr>
<tr>
<td></td>
<td>HVAC Schedule Setpoint</td>
</tr>
<tr>
<td></td>
<td>If External Heat, Reverse Acting</td>
</tr>
<tr>
<td></td>
<td>Initialization for Modular Service Tool</td>
</tr>
<tr>
<td></td>
<td>Internal Schedule Optimal Start Soak Multiplier Setpoint</td>
</tr>
<tr>
<td></td>
<td>Loop Search Screen</td>
</tr>
<tr>
<td></td>
<td>Low Ambient Protection</td>
</tr>
<tr>
<td></td>
<td>Mechanical Heat/Cool Failure Time Period Setpoints</td>
</tr>
<tr>
<td></td>
<td>MiniLink PD Configuration</td>
</tr>
<tr>
<td></td>
<td>Mod Heating Override</td>
</tr>
<tr>
<td></td>
<td>Morning Warm Up Temp Setpoint</td>
</tr>
<tr>
<td></td>
<td>MUA II Configuration Screens</td>
</tr>
<tr>
<td></td>
<td>Optimal Start Soak Multiplier</td>
</tr>
<tr>
<td></td>
<td>Outdoor Air Humidity Sensor Installed</td>
</tr>
<tr>
<td></td>
<td>Outdoor Air Lockouts</td>
</tr>
<tr>
<td></td>
<td>Outputs Force Screen</td>
</tr>
<tr>
<td></td>
<td>Overrides Screen</td>
</tr>
<tr>
<td></td>
<td>Proof of Flow Switch Installed</td>
</tr>
<tr>
<td></td>
<td>Push-Button Override Duration Setpoint</td>
</tr>
<tr>
<td></td>
<td>Reheat - Dowpwopt Control Setpoint</td>
</tr>
<tr>
<td></td>
<td>Relay Configuration Screens</td>
</tr>
<tr>
<td></td>
<td>Relay Overrides</td>
</tr>
<tr>
<td></td>
<td>Relief Setpoint</td>
</tr>
<tr>
<td></td>
<td>Reset Cooling Mode Supply Setpoint</td>
</tr>
<tr>
<td></td>
<td>Reverse Acting Building Pressure Control</td>
</tr>
<tr>
<td></td>
<td>SAT Cooling Setpoints</td>
</tr>
<tr>
<td></td>
<td>SAT Cool Reset</td>
</tr>
<tr>
<td></td>
<td>SAT Heating Setpoint</td>
</tr>
<tr>
<td></td>
<td>SAT High Reset</td>
</tr>
<tr>
<td></td>
<td>Schedule Override</td>
</tr>
<tr>
<td></td>
<td>Sensor Calibration for OAT</td>
</tr>
<tr>
<td></td>
<td>Sensor Calibration for SAT & OAT</td>
</tr>
<tr>
<td></td>
<td>Sensor Calibration for SPC & SAT & RAT</td>
</tr>
<tr>
<td></td>
<td>Sensor Calibration Reset for SPC</td>
</tr>
<tr>
<td></td>
<td>Sensor Slide Offset</td>
</tr>
<tr>
<td></td>
<td>Set Time & Date Screens</td>
</tr>
<tr>
<td></td>
<td>Space Sensor Overrides Screen</td>
</tr>
<tr>
<td></td>
<td>Staging Deadbands</td>
</tr>
<tr>
<td></td>
<td>Static Setpoint, Deadband & Control Rate Setpoints</td>
</tr>
<tr>
<td></td>
<td>Supply Air Alarm</td>
</tr>
<tr>
<td></td>
<td>Supply Air Temperature Reset</td>
</tr>
<tr>
<td></td>
<td>Supply Air Temperature Setpoint</td>
</tr>
<tr>
<td></td>
<td>Supply Control Deadband</td>
</tr>
<tr>
<td></td>
<td>Supply Fan Starting Delay Timer Setpoint</td>
</tr>
<tr>
<td></td>
<td>Supply Fan VFD Percentage</td>
</tr>
<tr>
<td></td>
<td>Supply VFD Override</td>
</tr>
<tr>
<td></td>
<td>Unit Selection Screens</td>
</tr>
<tr>
<td></td>
<td>TV, 50, 53, 56, 63, 65, 66</td>
</tr>
<tr>
<td></td>
<td>Unoccupied Cooling & Heating Setbacks Setpoints</td>
</tr>
<tr>
<td></td>
<td>Unoccupied Deadbands</td>
</tr>
<tr>
<td></td>
<td>VAV/CAV Configuration Screens</td>
</tr>
<tr>
<td></td>
<td>VAV/Zone Box Configuration</td>
</tr>
<tr>
<td></td>
<td>VAV/Zone Configuration</td>
</tr>
<tr>
<td></td>
<td>VAV/Zone Controller Setpoints</td>
</tr>
<tr>
<td></td>
<td>VAV/Zone Damper Operation</td>
</tr>
<tr>
<td></td>
<td>VAV/Zone Status</td>
</tr>
<tr>
<td></td>
<td>Week Schedules</td>
</tr>
<tr>
<td>Search</td>
<td>For Loops</td>
</tr>
<tr>
<td></td>
<td>For Overrides</td>
</tr>
<tr>
<td>Selection Buttons</td>
<td>Defined</td>
</tr>
</tbody>
</table>
Sensor Calibration
 Space Temperature..........59
 Supply Air Temperature..........59
Sensor Calibration for OAT..........37
Sensor Calibration for SAT & OAT..........49
Sensor Calibration for SPC, SAT & RAT..........37
Sensor Calibration Reset for SPC..........49
Sensor Slide Offset..........36
Series Fan Box, VAV/Zone..........53
Setpoints, Button..........10,16
Setting
 Date..........11,17
 Day of Week..........11,17
 Month..........11,17
 Year..........11,17
Slide Offset, VAV/Zone Status..........60
Space Sensor Overrides Screen..........21
Space Temperature, VAV/CAV Controller..........39
Space Temperature Controlling Sensor..........25
SPC Sensor Calibration..........49
Staging Deadbands..........46
Staging Up and Down Delay Periods..........37,48
Stand-Alone Connection..........9
Start and Stop Times
 2359..........14,22
 ZERO..........14,22
Static Pressure Reading, VAV/CAV Controller..........40
Static Spt, Deadband & Control Rate Setpoints..........34
Status Key..........10,16
Supply Air Alarm..........47
Supply Air Controlling Sensor..........25
Supply Air Setpoint Status, MUA II Controller..........51
Supply Air Temperature..........60
Supply Air Temperature Reset..........47
Supply Air Temperature Setpoint..........46
Supply Air Temperature & Setpoint Status
 VAV/CAV Controller..........40
Supply Fan, Starting Delay Timer Setpoint..........49
Supply Fan Relay Status..........52
Supply Fan Starting Delay Timer Setpoint..........35
Supply Fan VFD Percentage..........33
Supply VFD Override..........65
System
 Status..........64
 Type..........63
System Manager
 Dimensions..........6
 Override Search..........21
 Passcodes..........19
System Manager TS..........10,16
Testing the System, Outputs Force..........65
Time, 24-Hour Military Format..........14,22
Time & Date..........11,17
Touch Screen System Manager..........10,16
Troubleshooting the System, Outputs Force..........65
Type of CO₂ Sensor Installed..........27
Unit Selection Screen..........25,31,38,42,45,50,53,56,63,65,66
Unoccupied
 Cooling & Heating Setbacks Setpoints..........31
 Mode..........15,23
 Setbacks..........56
Unoccupied Cooling Deadband..........46
Unoccupied Deadbands..........46
Unoccupied Heating Deadband..........46
VAV/CAV Configuration, Screen Index..........24
VAV/CAV Controller
 Alarm Conditions..........41
 Building Pressure Status..........40
 CO₂ Level..........39
 Configuration Screens..........25
 Cooling Status..........39
 Economizer Damper Percentage Open..........40
 Economizer Status..........39
 Fan VFD Signal Percentage, Current..........40
 H/C Demand..........39
 Heating Status..........39
 HVAC Mode Status..........39
 MHGRV Output % Status..........41
 Mode Cooling Setpoint Status..........39
 Mode Enable Temperature Status..........39
 Mode Heating Setpoint Status..........39
 MODGAS Output % Status..........41
 Outdoor Air Relative Humidity..........40
 Outdoor Air Temperature..........40
 Outputs Force..........65
 Relay Overrides..........65
 Relay Status..........41
 Relief VFD Status..........40
 Space Temperature..........39
 Static Pressure Reading..........40
 Supply Air Temperature & Setpoint Status..........40
 Supply Fan Relay Status..........41
VAV/CAV Setpoints..........30
 Screens..........31
VAV/CAV Status Screen Index..........38
VAV/Zone
AHU Heat Call Space Temperature........57
Box Heat Allow........54
Configuration........53
Controllers........53, 62
Cooling Only Box........53
Damper Airflow
 Cool/Heat Minimum........57
 Integral........57
 Maximum........57
 Vent Minimum........57
Damper Airflow Fixed Position........58
Damper Airflow Night Minimum........58
Damper Airflow Reheat Minimum........58
Day/Night Schedule........59
Dump Zone........55
Expansion Relays Heating Stages........54
H/C Changeover Box........53
Main Fan Status........54
Maximum EMS Offset........59
Maximum Slide Offset........59
Occupied Setpoints........56
Parallel Fan Box........53
Pressure Independent Airflow Constant........54
Proportional Heating Signal........54
Push-Button Override........54
Push-Button Override Duration........59
Sensor Calibration for Space Temperature........59
Sensor Calibration for Supply Air Temperature........59
Series Fan Box........53
Unoccupied Setbacks........56
Voting Zone........54
Zone Alarm Delay........58
Zone Alarm Offsets........58
VAV/Zone Configuration
Damper Operation........53
VAV/Zone Setpoints
AHU Heat Call Space Temperature........57
Damper Airflow
 Cool Minimum........57
 Heat Minimum........57
 Integral........57
 Maximum........57
 Vent Minimum........57
Damper Airflow Fixed Position........58
Damper Airflow Night Minimum........58
Damper Airflow Reheat Minimum........58
Day/Night Schedule........59
Fan On Min........58
Maximum EMS Offset........59
Maximum Slide Offset........59
Occupied Setpoints........56
Push-Button Override Duration........59
Sensor Calibration for Space Temperature........59
Sensor Calibration for Supply Air Temperature........59
Unoccupied Setbacks........56
Zone Alarm Delay........58
Zone Alarm Offsets........58
VAV/Zone Status
Airflow........61
Alarm Status........61
Box Air Temperature........60
Cooling Setpoints........60
Desired CFM........61
Fan Status........61
Heating/Cooling Demand........60
Heating Setpoints........60
Mode of Operation........60
Reheat Stages........61
Screens........60
Slide Offset........60
Supply Air Temperature........60
Zone Damper Position........61
Zone Temperature........60
VCM-X Controller
Date........17
Holiday Start/Stop Times........23
Occupied Mode........23
Schedule Override........23
Scheduling........22
Time & Date........17
Unoccupied Mode........23
Week Schedules........22
VCM-X Schedule Holidays........22
Voting Zone Configuration........54

W
Warmup Mode Relay........29, 44
Week Schedules
 VCM-X Controller........14, 22
Wiring
 Power/Comm Board........8

Y
Year........11, 17

Z
Zone Alarm
 Delay........58
 Offsets........58
Zone Damper Position
 VAV/Zone Status........61
Zone Temperature
 VAV/Zone Status........60