LF Chiller Controller
Technical Guide

LF Chiller Controller Code: DT005683-001/SS1131 v. 1.00 and later
WARNING

QUALIFIED INSTALLER

IMPROPER INSTALLATION, ADJUSTMENT, ALTERATION, SERVICE, OR MAINTENANCE CAN CAUSE PROPERTY DAMAGE, PERSONAL INJURY, OR LOSS OF LIFE. INSTALLATION AND SERVICE MUST BE PERFORMED BY A TRAINED, QUALIFIED INSTALLER. A COPY OF THIS MANUAL SHOULD BE KEPT WITH THE UNIT AT ALL TIMES.
LF Chiller Control System

<table>
<thead>
<tr>
<th>Part Description</th>
<th>AAON P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF Chiller Main Controller</td>
<td>ASM02437</td>
</tr>
<tr>
<td>Chiller Refrigerant System Module</td>
<td>ASM02438</td>
</tr>
<tr>
<td>Chiller Pumping Module</td>
<td>ASM02448</td>
</tr>
<tr>
<td>E-BUS Horizontal Outdoor Air Temp & RH Sensor</td>
<td>ASM01836</td>
</tr>
<tr>
<td>Prism 2 Software</td>
<td>N/A</td>
</tr>
<tr>
<td>CommLink 5</td>
<td>ASM01874</td>
</tr>
<tr>
<td>IP Module Kit</td>
<td>ASM01902</td>
</tr>
<tr>
<td>USB-Link 2</td>
<td>ASM02244</td>
</tr>
<tr>
<td>EBC E-BUS Cable Assembly</td>
<td>G029440 (1.5 Ft), G012870 (3 Ft), G029460 (10 Ft), G045270 (25 Ft),</td>
</tr>
<tr>
<td>E-BUS Power & Comm</td>
<td>G029510 (50 Ft), G029530 (75 Ft), G029450 (100 Ft), G029470 (150 Ft),</td>
</tr>
<tr>
<td>1.5 Ft, 3 Ft, 10 Ft, 25 Ft, 50 Ft, 75 Ft, 100 Ft,</td>
<td>V36590 (250 Ft), G018870 (SPOOL)</td>
</tr>
<tr>
<td>150 Ft, 250 Ft, and 1000 Foot Spool</td>
<td></td>
</tr>
<tr>
<td>E-BUS Adapter Hub with 1.5 Ft. EBC Cable</td>
<td>ASM01635</td>
</tr>
<tr>
<td>E-BUS Adapter Board</td>
<td>ASM01878</td>
</tr>
</tbody>
</table>

LF Chiller Controller Technical Guide

<table>
<thead>
<tr>
<th>Revision & Date</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev. 01C, June 26, 2020</td>
<td>Removed WSE Outlet Temperature from needed sensors for WSE operation, p.14</td>
</tr>
</tbody>
</table>

AAON Factory Technical Support:

918-382-6450

techsupport@aaon.com

AAON Controls Support:

866-918-1100

Monday through Friday, 7:00 AM to 5:00 PM central standard time

NOTE: Before calling Technical Support, please have the model and serial number of the unit available.

PARTS: For replacement parts please contact your local AAON Representative.
OVERVIEW

Control System Features & Applications ... 6
Manual Overview .. 6

LF CHILLER MAIN CONTROLLER SEQUENCE OF OPERATION

Chiller Mode of Operation .. 7
Controlling the Operator Modes .. 7
Off Mode & Run Mode .. 8
Main Controller Alarms and Safeties ... 9
Mechanical Cooling Sequence ... 11
Refrigeration Warnings, Faults & Lockouts ... 12
Water Side Economizer Sequence & Alarms & Faults ... 14
Chiller Pumping Sequence & Alarms & Faults .. 15

INSTALLATION & WIRING

LF Chiller Main Controller Inputs & Outputs .. 16
Refrigerant Module Inputs & Outputs .. 16
Chiller Pumping Module Inputs & Outputs ... 17
LF Chiller Main Controller Input Wiring ... 18
LF Chiller Main Controller Output Wiring ... 19
Refrigerant A Module Input Wiring ... 20
Refrigerant A Module Output Wiring .. 21
Refrigerant B Module Input Wiring ... 22
Refrigerant B Module Output Wiring .. 23
Chiller Pumping Module Input Wiring ... 24
Chiller Pumping Module Output Wiring ... 25

TROUBLESHOOTING

LF Chiller Main Controller LED Diagnostics & Locations .. 26
Refrigerant Module A & B LED Diagnostics & Locations ... 28
Chiller Pumping Module LED Diagnostics & Locations .. 30
Thermistor Temperature Sensor Testing ... 32
Suction Pressure Transducer Testing ... 33
Discharge Pressure Transducer Testing .. 34
Important Wiring Considerations ... 35
Controller and Module Electrical and Environmental Specifications 36
APPENDIX A - LF CHILLER MAIN CONTROLLER LCD DISPLAY SCREENS	37
APPENDIX B - REFRIGERANT SYSTEM MODULE LCD DISPLAY SCREENS	42
APPENDIX C - CHILLER PUMPING MODULE LCD DISPLAY SCREENS	48
APPENDIX D - BACnet® MS/TP CONNECTION TO NETWORK & BACnet® PARAMETERS	57
APPENDIX E - PRISM 2 OPERATOR INTERFACE MONITORING	65
Features & Manual Overview

Control System Features & Applications

LF Chiller Main Controller

The LF Chiller Main Controller is used to control 1-2 circuit DX chillers with an option for water circuit pumping and an option for water side economizer.

The LF Chiller Main Controller has an on-board BACnet® port for connection to a BACnet® MS/TP BAS network. There are also (2) E-BUS expansion ports which allow for the connection of the Chiller Refrigerant System Modules and Chiller Pumping Module via EBC E-BUS cables.

In addition, the LF Chiller Main Controller and its associated modules contain a 2 x 8 LCD character display with 4 buttons that allow for status and alarm display and BACnet® configuration for the Main Controller.

Chiller Pumping Module

The Chiller Pumping Module (CPM) offers two distinct optional services to a chiller system—water circuit pumping and water side economizer. Each of these two services can be independently enabled or disabled.

Water Circuit Pumping

The Chiller Pumping (CP) functionality is to provide operational control of all water circuit pumping, including primary only, primary/secondary and dual primary/secondary systems. The CP provides for water circulation through the chiller exchanger and is also capable of managing building water pressure differential if supplying building water. The CP operational sequence does not make the decision about when to run the water pumps, it is commanded by the main chiller controller. If the CP operation is enabled and the WSE operation is enabled, freeze protection can override the currently commanded operation.

Waterside Economizer

The Waterside Economizer (WSE) functionality is to provide cooling when the outside air temperature is able to provide cooling. The WSE provides cooling by means of a set of outdoor coils with fans. When cooling is to be provided, water or a water/glycol mix is pumped through the coils to cool the water. The temperature of the cooled water is managed by a 3-way mixing valve and variable speed fans. In the case of a water system with an isolated glycol outside coil system, an additional 3-way mixing valve on the isolated (secondary) side is used in combination with the fans to cool a water/glycol mix feeding a heat exchanger which then cools the main loop water. Each loop, as well as the fans, operate independently, but interlocks in their sequences ensure that fans and the associated 3-way valve do not compete in their temperature control operations. The WSE operational sequence does not make the decision about when to provide WSE cooling, it is commanded by the Main Chiller Controller. If the WSE operation is enabled, freeze protection can override the currently commanded operation.

Manual Overview

This guide will lead you through each section of the *LF Chiller Controller Technical Guide*. Below is a quick overview of each section of this manual.

Section 1: Sequence of Operations - Page 7—This section contains the sequence of operations for the LF Chiller Controller and its modules.

Section 2: Wiring - Page 16—This section contains the inputs, outputs, and wiring for the controller and modules.

Section 3: Troubleshooting - Page 26—This section contains sensor testing charts and controller LED diagnostics.

Appendices A, B, C: LCD Display Screens - Page 37—These appendices describe the controller and module LCD screens.

Appendix D: BACnet® Configuration - Page 57—This section lists BACnet® parameters, definitions, and ranges, if applicable.

Appendix E: PRISM 2 User Interface - Page 65—This section gives a brief overview of the Prism 2 user interface of the LF Chiller Control System.
Chiller Mode of Operation

There are 2 operational modes for the Chiller system:

1. Off Mode
2. Chiller (Run) Mode

The sequence is based primarily on “normal” operation, with extensions to operation where exceptional conditions are present (safeties).

Controlling the Operator Modes

The two operator modes are commanded by a combination of 4 mode control factors:

1. Remote Unit Enable/Disable Input
2. Internal Schedule
3. Run/Stop override via BACnet®
4. Run/Stop override via the User Interface

Remote Unit Enable/Disable Input

This input is a master override to disable the unit.

When this input is inactive, the chiller will not run regardless of the other 3 control factors.

When this input is active, the chiller will operate according to the condition of the other 3 factors. Since the schedule defaults to always active, and the overrides default to always inactive, activating this input will by default activate the Chiller.

Internal Schedule

The Chiller controls have an internal schedule which may be used to automate Chiller operations on a timed basis. This schedule defaults to always on and in combination with the Remote Unit Enable/Disable input can affect the electrical binary remote control of the chiller.

Regardless of the Internal Schedule commands, the Remote Unit Enable/Disable Input MUST be active for the Chiller to run. The schedule has no effect on operations otherwise. The internal schedule can be overridden by either of the Run/Stop override settings.

Run/Stop Override via BACnet® and Run/Stop

Override via User Interface (UI)

These two override operations, issued from two possible sources, affect the same single internal conditional variable, meaning an override issued by BACnet® can be canceled via the UI and an override condition issued by the UI can be canceled or altered via BACnet®.

NOTE: Regardless of the override conditions, the Remote Unit Enable/Disable Input MUST be active for the chiller to run. These override conditions have no meaning if the input is not active.

There are 3 Run/Stop Override value settings:

- 0 = Automatic Operation: Operation will be based on an internal schedule.
- 1 = Chiller Run: Chiller will operate in the Running Mode.
- 2 = Chiller Off: Chiller will operate in the Off Mode.
SECTION 1: SEQUENCE OF OPERATIONS

LF Chiller Main Controller Operation Modes

Off Mode

If the Remote Enable/Disable is disabled, the Internal Schedule (if used) has transitioned to the Unoccupied Mode, or if an override is indicating Stop, the Chiller will enter the Off Mode. In Off Mode, everything that was running will shut down. **NOTE:** If there are multiple circuits, each circuit will pump down separately, yet simultaneously, and terminate independently.

Once the compressors have shut down, the condenser fans will shut down, the Water Side Economizer (if present) will shut down, and the circuit pumping (if present) will shut down.

Chiller Run Mode

The objective of the running mode is to generate cold water using Mechanical Cooling and Water Side Economizer Cooling if available. The economizer operation is commanded active or inactive by the LF Main Chiller.

If the Chiller Pumping Module is present and pumping operation is configured, the Chiller Module will activate pumping operations. The Chiller will not operate unless the Water Flow Switch is closed to provide 24 VAC to the Water Flow Switch binary input on the LF Chiller Main Controller.

If the Water Side Economizer is present and the ambient temperature is below the Entering Water Temperature by the adjustable Water Side Economizer Enable Deadband (defaulted to 5°F), the LF Chiller Main Controller will signal the Chiller Pumping Module to begin Water Side Economizer operation (see Water Side Economizer sequence for details).

If the Water Side Economizer is present and the ambient temperature is at or above the Entering Water Temperature, the LF Chiller Main Controller will signal the Chiller Pumping Module to disable Water Side Economizer operation.

If the Water Side Economizer is not present, is not active, or has reached its maximum, and the Leaving Water Temperature is above the Leaving Water Temperature Setpoint by the Mechanical Cooling Enable Deadband (adj.), then Mechanical Cooling will be enabled. The LF Chiller Main Controller will send a signal to the Chiller Pumping Module that mechanical cooling is active and the Water Side Economizer (if active) will be locked at maximum.

Mechanical Cooling may be locked out by the Ambient Compressor Lockout or by Water Proof of Flow failure.
Alarms and Safeties
Each of these sub-sequences is run collectively to evaluate various inputs and internal conditions for status and alarming/faulting purposes.

Chiller Entering Water Temperature (EWT)
If the EWT sensor has failed (measurement outside the accepted normal operating range for the given sensor), an EWT Sensor Failure alarm will be generated.
The EWT is used in the reverse flow safety which is not operated if this sensor fails (see Chiller Leaving Water Temperature Input below).

Chiller Leaving Water Temperature (LWT)
The LWT is the target for the chiller operations and is used in controlling the operation of the chiller.
If the LWT sensor has failed (measurement outside the accepted normal operating range for the given sensor), the chiller will be shut down and locked out, an LWT sensor failure alarm will generate, and all chiller running operations will be locked out (the Chiller Pumping Module may have independent freeze protection operations that may continue to run). A power cycle or specific command sent via BACnet® is required to restore operations, at which point operations will start as if the unit had just been powered up.
If the water drops below the Leaving Water Freeze Limit (default 35°F, adjustable based on glycol %), the chiller will be shut down and locked out, a freeze protection alarm will be generated, and all chiller running operations will be locked out (the Chiller Pumping Module may have independent freeze protection operations that may continue to run). A power cycle or specific command sent via BACnet® is required to restore operations, at which point operations will start as if the unit had just been powered up.
If the EWT is below the LWT by a difference of 4°F or more for a duration of 1 minute, the chiller will be shut down and locked out, a reverse flow alarm will be generated, and all chiller running operations are locked out (the Chiller Pumping Module may have independent freeze protection operations that may continue to run). A power cycle or specific command sent via BACnet® is required to restore operations, at which point operations will start as if the unit had just been powered up.

Compressor Current Sensor Inputs (1-4)
There are 4 compressor current inputs, one associated with each compressor. Each input is only monitored and acted upon if the associated compressor is configured and active.
The compressor current will be measured and shared with the refrigeration module controlling that compressor.
The compressor safeties operate in the individual refrigeration modules, based on the current measurement information provided by the main controller.
For each individual compressor, if the current is less than 20% of the Running Load Amps (RLA) for the given compressor for more than 30 seconds or if the current is more than 120% of the RLA for 10 seconds, the given compressor will shut down, an alarm will generate, and a 5 minute recovery delay will occur before a lock out will be issued. Following the recovery delay (no lockout), the failure alarm will be cleared and the compressor can be restarted if still called for. If (3) shutdowns occur in a 2-hour window, the compressor will be locked out and an alarm will be generated to indicate a lockout has occurred. The lockout can only be cleared by cycling power to the module or via a clearing command issued through BACnet®. NOTE: RLA is configurable in the controller for each compressor.

Ambient Temperature Input
The ambient temperature sensor is used in determining when to operate the water side economizer if present and may be used by the water side economizer for freeze protection operations.
If ambient temperature sensor is determined to have failed (measurement outside the accepted normal operating range for the given sensor), an ambient temperature sensor failure alarm will be generated.
If the water side economizer is present, its operation will be disabled.

Water Flow Switch Input
The water flow switch controls when mechanical cooling may operate. Mechanical cooling cannot be started until the water flow switch is active for a minimum of 30 seconds.
When water flow is present, if the water flow switch is inactive for more than 10 seconds, an emergency shut down of running compressors will occur (no pump down). Once the switch is reactivated, mechanical cooling may restart as needed.
SECTION 1: SEQUENCE OF OPERATIONS

Main Chiller Alarms and Safeties

Emergency Shutdown Input
This is a direct safety input and must be active for the chiller to operate and for pumping operations (when circuit pumping is configured).

NOTE: Freeze protection operations in the Chiller Pumping Module may continue to operate even if the emergency shutdown input is deactivated.

If the emergency shutdown input is deactivated for a period of 2 seconds, all chiller operations and any running compressors (without a pump down) will be shut down immediately, all EXVs will be closed immediately, and an emergency shutdown alarm will be generated. Once reactivated, the alarm will clear and the chiller may restart operations from the beginning as if just powered up.

Phase Brownout Input
This is a direct safety input and must be active for the chiller to operate and for pumping operations (when circuit pumping is configured).

NOTE: Freeze protection operations in the Chiller Pumping Module may continue to operate even if the emergency shutdown input is deactivated.

If the phase brownout input is deactivated for a period of 2 seconds, all chiller operations and any running compressors (without a pump down) will be shut down immediately, all EXVs will be closed immediately, and a phase brownout alarm will be generated. Once reactivated, the alarm will clear and the chiller may restart operations from the beginning as if just powered up.
Sequences

There are 4 main sequences for the Chiller system:

1. Mechanical Cooling Sequence
2. Water Side Economizer Sequence
3. Water Circuit Pumping Sequence
4. Inputs and Safeties Sequence

Mechanical Cooling Sequence

Compressor/Module Configurations Supported

<table>
<thead>
<tr>
<th>COMPRESSIONS/ CIRCUIT</th>
<th>CIRCUIT 1 COMPRESSOR(S)</th>
<th>CIRCUIT 2 COMPRESSOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Fixed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Variable Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Fixed</td>
<td></td>
<td>Fixed</td>
</tr>
<tr>
<td>1 Variable Capacity</td>
<td>Fixed</td>
<td></td>
</tr>
<tr>
<td>1 Variable Capacity</td>
<td>Variable Capacity</td>
<td></td>
</tr>
<tr>
<td>2 (Tandem) Fixed/Fixed</td>
<td>Fixed/Fixed</td>
<td>Fixed</td>
</tr>
<tr>
<td>2 (Tandem) Variable Capacity/ Fixed</td>
<td>Fixed/Fixed</td>
<td></td>
</tr>
<tr>
<td>2 (Tandem) Variable Capacity/ Fixed</td>
<td>Variable Capacity/ Fixed</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Compressor/Module Configurations

If the Leaving Water temperature is above the Leaving Water Temperature Setpoint by the Compressor Stage Window Above Setpoint, compressors will be staged/modulated to achieve the Leaving Water Temperature Setpoint.

If a compressor is enabled and is not locked out, the compressor will be started. The water flow switch will be evaluated before allowing Mechanical Cooling to run. If the water flow switch input is lost, then all compressors will shut off immediately regardless of the minimum run time, with no pump down.

On chillers with multiple compressors, if the Leaving Water Temperature remains above setpoint for the Stage Up Delay, the next compressor can stage up. A variable capacity compressor must be at 100% for the Stage Up Delay for the next compressor to stage up.

To stage down fixed compressors, the Leaving Water Temperature must be below setpoint by the Compressor Stage Window Below Setpoint for the Stage Down Delay. With variable capacity and fixed compressors, the variable capacity compressor must be at minimum capacity for the Stage Down Delay to stage down a fixed compressor. To stage off the variable capacity compressor it must be a minimum capacity for the Stage Down Delay.
Refrigeration Alarm Descriptions

Alarm Warnings Descriptions

Low Suction Pressure Warning
Low suction pressure will be ignored for the first minute of initial compressor operation. If the suction pressure is below the glycol-adjusted setpoint (default 105 psi) for 20 seconds, the digital compressor will modulate down 1% per second. The warning will clear once the suction pressure rises above setpoint.

Low Suction Pressure – Startup Warning
The suction pressure must be above 40 psig for the compressor on the circuit to start. A warning will generate if the circuit is off and suction pressure is below 40 psig.

High Discharge Pressure – Level 1 Warning
If the discharge pressure rises above 525 psig, the condenser fan will be forced to 100%.

High Discharge Pressure – Level 2 Warning
If the discharge pressure rises above 550 psig, the compressor will modulate down 1% per second and the 2nd tandem compressor will be shut down until the discharge pressure drops below 425 psig.

Discharge Pressure Not Detected Warning
If the discharge pressure sensor is not detected and a compressor is running, the Copeland Digital Scroll will be forced to 50% based on Copeland requirements.

High Superheat Warning
If a compressor is active and the superheat is above 25 degrees for two minutes or longer, an alarm will be generated.

Condenser Fault Binary Input Warning
If the connection to the condenser binary input is lost, an alarm will be generated.

Discharge Line Temp Sensor Not Detected Warning
If the discharge line temperature analog input sensor is not detected by the module, the Condenser fan will be forced to 100%.

Liquid Pressure Sensor Not Detected
If the liquid pressure sensor is not detected and a compressor is running, an alarm will be generated.

Liquid Line Temperature Sensor Not Detected
If the liquid line temperature sensor is not detected, an alarm will be generated.

Alarm Faults Description

Low Suction Pressure Fault
Low suction pressure will be ignored for the first minute of initial compressor operation. If the suction pressure is below the glycol-adjusted setpoint (default 105 psi) for 1 minute, the compressor(s) will turn off. After 5 minutes have passed, if the suction pressure measures above the glycol-adjusted restart setpoint (default 115 psi), the fault will clear.

Unsafe Suction Pressure Fault
Unsafe suction pressure detection will be ignored for the first 30 seconds of initial compressor operation. If the suction pressure is below the glycol-adjusted setpoint (default 50 psi) for 5 seconds, the compressor(s) will be turned off. After 5 minutes have passed, if the suction pressure measures above the glycol-adjusted restart setpoint (default 115 psi), the fault will clear.

High Discharge Pressure Fault
For a single compressor circuit, if the discharge pressure rises above 600 psig, the compressor will turn off. After five minutes have passed, if the discharge pressure drops below 475 psig, the compressor will turn back on.

Compressor 2 High Discharge Pressure Fault
For a tandem compressor circuit, if the discharge pressure rises above 550 psig, the second compressor will turn off. After the minimum off time and stage up delays have been met, the compressor will retry.

Compressor 1 or Compressor 2 Not Running Fault
If the compressor has been activated for at least 45 seconds, but the binary input signal to the module is not active, the Compressor signal will turn off. After five minutes the fault will clear and the compressor will retry.

Low Superheat Fault
Low superheat detection will be ignored for the first 2 minutes of initial compressor operation. If superheat is below four degrees for two minutes, the compressor signal will turn off. After five minutes the fault will clear and the compressor will retry.

High Discharge Line Temperature Fault
The discharge line temperature sensor is installed for digital scroll compressors only. If the discharge line temperature is above 225 degrees for 30 seconds, the compressor will fail. If the discharge line temperature is below 150 degrees and five minutes have passed, the compressor will retry.
SECTION 1: SEQUENCE OF OPERATIONS

Refrigeration Alarm Descriptions

Communications Loss Fault
If E-BUS communications are lost for at least 15 seconds, the compressor(s) will turn off. When communication is reestablished, the fault will clear.

Compressor 1 False Active Warning
If the compressor is not activated, but the binary input signal to the module is active for at least 45 seconds, the condenser fan will be forced to 100%.

Compressor 2 False Active Warning
If the compressor is not activated, but the running verification signal to the module is active for at least 45 seconds, the condenser fan will be forced to 100%. For fixed on/off compressors, the running verification is a binary input signal to the module.

High Superheat Fault
If a compressor is active and the superheat is above 40 degrees for 1 minute or longer, the compressor(s) will turn off. After five minutes have passed, the compressor(s) will retry.

Suction Line Temperature Sensor Not Detected
The circuit is disabled until the sensor is detected.

Suction Pressure Sensor Not Detected
The circuit is disabled until the sensor is detected.

High Saturation Temperature Fault
If the compressor is at 100% and the saturation temperature is above 55 degrees for 5 minutes, both compressors will fail.

Compressor 1 or Compressor 2 Overcurrent Fault
If the current is more than 120% of the Running Load Amps (RLA) for 10 seconds, the compressor will shut down.

Compressor 1 or Compressor 2 Undercurrent Fault
If the current is less than 20% of the RLA for 30 seconds, the compressor will shut down.

High Discharge Pressure Lockout
If a high discharge pressure fault occurs three times in a two-hour time period, the circuit will be disabled and locked out until the module is reset.

Low Superheat Lockout
If a low superheat fault occurs three times in a two-hour time period, the circuit will be disabled and locked out until the module is reset.

High Superheat Lockout
If a high superheat fault occurs three times in a two-hour time period, the circuit will be disabled and locked out until the module is reset.

High Discharge Line Temperature Lockout
If a high discharge line temperature fault occurs three times in a two-hour time period, the circuit will be disabled and locked out until the module is reset.

Compressor 1 Overcurrent
If a compressor overcurrent fault occurs three times in a two-hour time period, the compressor will be disabled and locked out until the module is reset.

Compressor 2 Overcurrent
If a compressor overcurrent fault occurs three times in a two-hour time period, the compressor will be disabled and locked out until the module is reset.

High Saturation Temperature
If a high saturation temperature fault occurs three times in a two-hour time period, the circuit will be disabled and locked out until the module is reset.

Compressor 1 Undercurrent
If a compressor under current fault occurs three times in a two-hour time period, the compressor will be disabled and locked out until the module is reset.

Compressor 2 Undercurrent
If a compressor undercurrent fault occurs three times in a two-hour time period, the compressor will be disabled and locked out until the module is reset.

Alarm Lockouts Description

Low/Unsafe Suction Pressure Lockout
If a low suction pressure fault or unsafe suction pressure fault occurs three times in a two-hour time period, the circuit will be disabled and locked out until the module is reset.

Low Discharge Pressure Lockout
If the discharge pressure is below 200 psig for 2 minutes, the circuit will be disabled and locked out until the module is reset.
SECTION 1: SEQUENCE OF OPERATIONS

Water Side Economizer Sequence

Water Side Economizer (WSE) Operation

Power Up Delay
Once power is applied to the unit, the control algorithm will not start until 30 seconds has expired. **NOTE:** 100% valve position equals max valve position that can be less than full open.

Cooling Mode
If the ambient temperature is below the entering water temperature by the WSE Enable Offset (adj.), then the WSE will be used as the primary source of cooling. Once in WSE operation, the WSE 3-way valve will modulate to maintain the Leaving Water Temperature setpoint.

If the valve reaches 100% and the Leaving Water Temperature Out (LWTO) is still above setpoint, then the WSE VFD fans will begin to modulate in conjunction with the 3-way valve to achieve setpoint. If both the 3-way valve and the WSE VFD fans reach 100% and the LWTO is still above setpoint, then Compressor Cooling will be enabled while the 3-way valve and fans stay at 100%.

If Compressor Cooling is active and the ambient temperature drops below the entering water temperature by the WSE Enable Offset Setpoint (adj.), the WSE will be enabled. The WSE will be enabled at a slow rate to avoid negatively impacting the barrel operation.

If the WSE and Compressor Cooling are active and the ambient temperature rises above a value calculated to be the entering water temperature minus ½ of the WSE Enable Offset, then WSE will be disabled. The 3-way valve will close and the WSE fans will de-energize.

Controlling Sensor
The following sensor is needed:

WSE Valve Outlet Mixed Temperature
Measures the temperature of the water after the 3-way mixing valve.

Alarms & Faults

WSE VFD Fault
If the VFD is indicating a fault, an alarm will generate and operations will continue as if the VFD were operational.

Freeze Protection
If the WSE Valve Outlet Mixed Temperature drops below the freeze protection temperature setpoint, an alarm will indicate the WSE is in freeze protection operation. The WSE Fans will be disabled and the 3-way mixing valve will open to pass 100% water to the WSE coils.

Additionally, if the water circuit pumping is enabled, it will be forced active to circulate water through the WSE. This action for the water circuit pumping operation is configurable and can be disabled.

If the WSE Valve Outlet Mixed Temperature rises 5°F above the freeze protection temperature setpoint, the freeze protection alarm will clear.

WSE Valve Outlet Mixed Temperature Sensor Failure
An alarm will indicate the sensor failure.
Chiller Pumping (CP) Sequence

The pumping section of an LF Chiller is capable of managing the pumping in a primary only chilled water circuit arrangement. The pumping operation has two basic modes of operation:

1. Off Mode
2. Pumping Mode

Off Mode

In Off Mode, all pumps will turn off.

Pumping Mode

There are two conditions that will cause the unit to run in pumping mode. While in the off mode, if WSE is configured and CP operation in freeze protection is configured, and if a system lockout is not present, then if WSE freeze protection or heat exchanger freeze protection become active, the CP will run in pumping mode – even if the chiller is not running. Otherwise, the unit will enter pumping mode whenever the chiller is in run mode.

During pumping mode, there are two distinct sequences that are run based on pump configuration. Each sequence has additional handling for backup and lead/lag operations:

1. Primary Circuit Only with Fixed Speed Pumping
2. Primary Circuit Only with Variable Speed Pumping

Primary Circuit Only with Fixed Speed Pumping

If Primary A Pump 1 is enabled and after 30 seconds, POWF is made, the pump will continue to run. If POWF is not made, the pump will turn off. The Pump will be locked out, and a Pump Lockout Alarm will occur.

If the POWF Switch deactivates for more than 30 seconds, the pump will shut down, The Pump will be locked out, and a Pump Lockout Alarm will occur.

Primary Circuit Only with Variable Speed Pumping

If Primary A Pump 1 with VFD at minimum speed is enabled and after 30 seconds the (1) the building pressure differential reaches a value greater than 1 psi and (2) POWF is made, the pump will continue to run and the VFD will modulate to maintain the differential pressure setpoint. However, if either of these conditions are not met, the pump will turn off.

If the POWF Switch deactivates for more than 30 seconds or a VFD fault occurs, the pump will shut down, The Pump will be locked out, and a Pump Lockout Alarm will occur.

Chiller Pumping Sequence

Lead Lag Operation & Backup Pump

If Lead Lag Operation is configured, the pump with the least amount of run time will activate first. If the lead pump is locked out, then the Lag pump will come on.

If Lead Lag Operation is not configured and the lead pump is locked out, the backup pumps will come on using the same sequence as the lead pump.

Freeze Protection

If the Automatic Pump in Freeze Protection is enabled and the WSE section goes into freeze protection, the pumping mode will be forced active. The freeze protection operation cannot override a system lockout, which will keep any pumps from running.

Alarms & Faults

Discharge Sensor Fail
If the analog input for the pressure sensor measures above 4.5vdc or below 0.5vdc, then the sensor is considered to have failed.

Discharge Sensor Fault
This fault occurs if the discharge pressure is above the maximum discharge pressure setpoint for more than 5 seconds.

Discharge Initial Startup Fail
This fault occurs if the discharge pressure does not change by 1 psi in the first 30 seconds of running.

Suction Sensor Fail
If the analog input for the pressure sensor measures above 4.5vdc or below 0.5vdc, then the sensor is considered to have failed.

Suction Sensor Fault
This fault occurs if the suction pressure is below the minimum suction pressure setpoint.

Differential Pressure Fault
This fault occurs if the differential pressure is less than 0 psi for 30 seconds when the pump is active.

Pump Lockout
This lockout will occur (1) if POWF does not occur or is lost for 30 seconds, (2) if a VFD Fault occurs, (3) if a Discharge or Suction Pressure Sensor Fails or Fault occurs, or (4) if a Differential Pressure Fault occurs.

Chiller Pumping System Lockout
If all pumps are in a lockout condition, then the pumping system will lockout. Pumping cannot operate and the off mode is effectively enforced regardless of the current chiller command. (NOTE: A system lockout can only be cleared by a power cycle or module fault reset).
SECTION 2: WIRING

LF Chiller Main Controller & Refrigerant Module Input/Output Maps

Input/Output Maps

See Table 2 for the LF Chiller Main Controller Inputs/Outputs and Table 3 for the Refrigerant System Module Inputs/Outputs.

<table>
<thead>
<tr>
<th>LF CHILLER MAIN CONTROLLER</th>
<th>REFRIGERATION SYSTEM MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Inputs</td>
<td>Analog Inputs</td>
</tr>
<tr>
<td>1 Entering Water Temperature Sensor (AI1)</td>
<td>1 Suction Pressure Sensor (SP-1)</td>
</tr>
<tr>
<td>2 Leaving Water Temperature Sensor (AI2)</td>
<td>2 Discharge Line Pressure Sensor (HP-1)</td>
</tr>
<tr>
<td>3 Compressor A1 Amps (AI3)</td>
<td>3 Liquid Line Pressure Sensor (SP-2)</td>
</tr>
<tr>
<td>4 Compressor A2 Amps (AI4)</td>
<td>4 Not Used</td>
</tr>
<tr>
<td>5 Compressor B1 Amps (AI5)</td>
<td>Binary Inputs</td>
</tr>
<tr>
<td>6 Compressor B2 Amps (AI6)</td>
<td>1 Compressor 1 Status (BIN1)</td>
</tr>
<tr>
<td>7 Outside Air Temperature Sensor (AI7)</td>
<td>2 Compressor 2 Status (BIN2)</td>
</tr>
<tr>
<td>8 Leaving Water Temperature Reset (AI8)</td>
<td>3 Condenser Fault (BIN3)</td>
</tr>
<tr>
<td>Binary Inputs</td>
<td>4 Circuit Disable (BIN4)</td>
</tr>
<tr>
<td>1 Remote Start/Stop (BIN1)</td>
<td>Temperature Inputs</td>
</tr>
<tr>
<td>2 Water Flow Switch 1 (BIN2)</td>
<td>1 Suction Line Temperature (TEMP1)</td>
</tr>
<tr>
<td>3 Emergency Shutdown (BIN3)</td>
<td>2 Discharge Line Temperature 2 (TEMP2)</td>
</tr>
<tr>
<td>4 Not Used (BIN4)</td>
<td>3 Liquid Line Temperature 3 (TEMP3)</td>
</tr>
<tr>
<td>5 Phase Brownout (BIN5)</td>
<td>Binary Outputs</td>
</tr>
<tr>
<td>6 Not Used (BIN6)</td>
<td>1 Compressor 1 Enable (RLY1)</td>
</tr>
<tr>
<td>7 Not Used (BIN7)</td>
<td>2 Compressor 2 Enable (RLY2)</td>
</tr>
<tr>
<td>8 Not Used (BIN8)</td>
<td>3 Condenser Enable (RLY3)</td>
</tr>
<tr>
<td>Binary Outputs (24 VAC)</td>
<td>4 Not Used (RLY4)</td>
</tr>
<tr>
<td>1 Not Used (RLY1)</td>
<td>5 Not Used (RLY5)</td>
</tr>
<tr>
<td>2 Not Used (RLY2)</td>
<td>Analog Outputs</td>
</tr>
<tr>
<td>3 Not Used (RLY3)</td>
<td>1 Condenser (AOUT1)</td>
</tr>
<tr>
<td>4 Alarm (RLY4)</td>
<td>2 Expansion Valve (AOUT2)</td>
</tr>
<tr>
<td>5 Chiller Enabled (RLY5)</td>
<td>Additional Inputs</td>
</tr>
<tr>
<td>6 Not Used (RLY6)</td>
<td>DUAL E-BUS 2 EBC E-BUS Ports</td>
</tr>
<tr>
<td>7 Not Used (RLY7)</td>
<td>MODBUS MODBUS Communication Terminal Block</td>
</tr>
<tr>
<td>8 Not Used (RLY8)</td>
<td>Table 3: Chiller Refrigerant Module Inputs & Outputs</td>
</tr>
</tbody>
</table>

Communication Terminals

<table>
<thead>
<tr>
<th>BAC-NET</th>
<th>Communication Terminal Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-485 COMM</td>
<td>Prism User Interface Terminal Block</td>
</tr>
<tr>
<td>DUAL E-BUS</td>
<td>2 EBC E-BUS Ports</td>
</tr>
</tbody>
</table>

Table 2: LF Chiller Main Controller Inputs & Outputs

Table 3: Chiller Refrigerant Module Inputs & Outputs
Input/Output Maps

See Table 4 for the Chiller Pumping Module Inputs/Outputs.

<table>
<thead>
<tr>
<th>CHILLER PUMPING MODULE</th>
<th>Analog Inputs - 10K @ 77 Deg F Type 3 Thermistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mixing Valve Water Outlet Temperature Sensor</td>
</tr>
<tr>
<td></td>
<td>(AIN1)</td>
</tr>
<tr>
<td>2</td>
<td>Mixing Valve Water Feed Temperature Sensor</td>
</tr>
<tr>
<td></td>
<td>(AIN2)</td>
</tr>
<tr>
<td>3</td>
<td>Heat Exchanger Secondary Inlet Temperature</td>
</tr>
<tr>
<td></td>
<td>Sensor (AIN3)</td>
</tr>
<tr>
<td>4</td>
<td>Heat Exchanger Secondary Outlet Temperature</td>
</tr>
<tr>
<td></td>
<td>Sensor (AIN4)</td>
</tr>
<tr>
<td>Binary Inputs</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>WSE VFD Fault (BIN1)</td>
</tr>
<tr>
<td>4</td>
<td>Chiller Pump VFD 1 Fault (BIN4)</td>
</tr>
<tr>
<td>5</td>
<td>Chiller Pump VFD 2 Fault (BIN5)</td>
</tr>
<tr>
<td>Analog Outputs</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>WSE VFD Speed (AO1)</td>
</tr>
<tr>
<td>2</td>
<td>Primary 3-Way Mixing Valve Actuator (AO2)</td>
</tr>
<tr>
<td>3</td>
<td>Secondary 3-Way Mixing Valve Actuator (AO3)</td>
</tr>
<tr>
<td>4</td>
<td>Chiller Pump VFD (AO4)</td>
</tr>
<tr>
<td>Binary Outputs (24 VAC)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>WSE Fan Enable (RLY1)</td>
</tr>
<tr>
<td>2</td>
<td>Glycol Pump (RLY2)</td>
</tr>
<tr>
<td>3</td>
<td>Primary A Pump 1 (RLY3)</td>
</tr>
<tr>
<td>4</td>
<td>Primary A Pump 2 (RLY4)</td>
</tr>
<tr>
<td>5</td>
<td>Secondary Pump 1 (RLY5)</td>
</tr>
<tr>
<td>6</td>
<td>Secondary Pump 2 (RLY6)</td>
</tr>
<tr>
<td>7</td>
<td>Primary B Pump 1 (RLY7)</td>
</tr>
<tr>
<td>8</td>
<td>Primary B Pump 2 (RLY8)</td>
</tr>
<tr>
<td>Communication Terminals</td>
<td></td>
</tr>
<tr>
<td>E-BUS</td>
<td>(2) Dual E-BUS Ports</td>
</tr>
</tbody>
</table>

Table 4: Chiller Pumping Module Inputs & Outputs
LF Chiller Main Controller Input Wiring

The LF Chiller Main Controller is used to control 1-2 circuit DX chillers with an option for water circuit pumping and an option for water side economizer.

The Controller is designed with 8 analog inputs, 4 analog outputs, 8 binary inputs, and 8 relay outputs.

The Controller has an on-board BACnet® port for connection to a BACnet® MS/TP network. There are also 2 E-BUS Expansion Ports which allow the connection of communicating sensors and future E-BUS Modules via modular cable assemblies.

The Controller contains a 2 x 8 LCD character display and 4 buttons that allow for status and alarm display as well as BACnet® configuration.

See Figure 1 below for input wiring.
LF Chiller Main Controller Output Wiring

The LF Chiller Controller has (2) E-BUS Expansion Ports which allow for the connection of the Chiller Refrigerant Modules and the Chiller Pumping Module via EBC E-BUS Cables.

The LF Chiller Controller must be connected to an 18-30 VAC power source. Please see Table 9, page 36 for correct VA requirements to use when sizing the transformer(s) used for powering the Controller and its associated modules.

Also, please note that when wiring the LF Chiller Controller, its contacts must be wired as wet contacts (connected to 24 VAC).

See Figure 2 below for output wiring.
Chiller Refrigerant A Module Input Wiring

The Chiller Refrigerant A Module provides control of the compressors and condenser fans on an LF Chiller.

The Chiller Refrigerant A Module provides 3 analog inputs, 4 binary inputs, 5 relays, and 2 analog outputs.

The Module has a Dual E-BUS Expansion Port which allows the connection of communicating sensors and future E-BUS Modules via modular cable assemblies.

The Module contains a 2 x 8 LCD character display and 4 buttons that allow for status and alarm display.

The Chiller Refrigerant Module must be connected to an 18-30 VAC power source. When wiring the Refrigerant Module, its relay outputs must be wired as wet contacts (connected to 24 VAC).

See Figure 3 below for input wiring.

Figure 3: Chiller Refrigerant A Module Input Wiring

WARNING! All boards must be wired with GND-to-GND and 24VAC-to-24VAC. Failure to observe polarity will result in damage to one or more of the boards.

Size Transformer For Correct Total Load.
Chiller Refrigerant Module = 18 VA
Chiller Refrigerant A Module Output Wiring

See Figure 4 below for output wiring.

Figure 4: Chiller Refrigerant A Module Output Wiring
SECTION 2: WIRING

Chiller Refrigerant B Module Input Wiring

The Chiller Refrigerant B Module provides control of the compressors and condenser fans on an LF Chiller.

The Chiller Refrigerant B Module provides 3 analog inputs, 4 binary inputs, 5 relays, and 2 analog outputs.

The Module has a Dual E-BUS Expansion Port which allows the connection of communicating sensors and future E-BUS Modules via modular cable assemblies.

The Module contains a 2 x 8 LCD character display and 4 buttons that allow for status and alarm display.

The Chiller Refrigerant Module must be connected to an 18-30 VAC power source. When wiring the Refrigerant Module, its relay outputs must be wired as wet contacts (connected to 24 VAC).

See Figure 5 below for input wiring.

Figure 5: Chiller Refrigerant B Module Input Wiring
Chiller Refrigerant B Module Output Wiring

See Figure 6 below for output wiring.

NOTE:
ALL RELAY OUTPUTS ARE NORMALLY OPEN AND RATED FOR 24 VAC POWER ONLY - 1 AMP MAXIMUM LOAD

WARNING!!
Observe Polarity! All boards must be wired with GND-to-GND and 24VAC-to-24VAC. Failure to observe polarity will result in damage to one or more of the boards.

Figure 6: Chiller Refrigerant B Module Output Wiring
Chiller Pumping Module Input Wiring

The Chiller Pumping Module offers two distinct optional services to a chiller system—water circuit pumping and water side economizer. Each of these two services can be independently enabled or disabled.

The Chiller Pumping Module is connected to the LF Chiller Main Controller. Only (1) module can be connected.

The Chiller Pumping Module provides a 2 x 8 LCD character display and 4 buttons that allow for status of system operation, system setpoints, system configurations, sensors, and alarms and to change the module’s address, if necessary.

See Figure 7 below for input wiring.

Figure 7: Chiller Pumping Module Input Wiring

WARNING!!
Observe Polarity! All boards must be wired with GND-to-GND and 24VAC-to-24VAC. Failure to observe polarity will result in damage to one or more of the boards. Expansion Modules must be wired in such a way that the expansion modules and the controller are always powered together. Loss of power to the expansion module will cause the controller to become inoperative until power is restored to the expansion module.
Chiller Pumping Module Output Wiring

See Figure 8 below for output wiring.

Figure 8: Chiller Pumping Module Output Wiring

- **WARNING!!**
 Observe Polarity! All boards must be wired with GND-to-GND and 24VAC-to-24VAC. Failure to observe polarity will result in damage to one or more of the boards. Expansion Modules must be wired in such a way that the expansion modules and the controller are always powered together. Loss of power to the expansion module will cause the controller to become inoperative until power is restored to the expansion module.
SECTION 3: TROUBLESHOOTING

LF Chiller Main Controller LED Diagnostics

LF Chiller Main Controller LEDs

The LF Chiller Main Controller is equipped with LEDs that can be used to verify operation and perform troubleshooting. See Figure 9, page 27 for the LED locations. The LEDs associated with these inputs and outputs allow you to see what is active without using a voltmeter. The LEDs and their uses are as follows:

Operation LEDs - Factory Troubleshooting

- **POWER** - This green LED will light up to indicate that 24 VAC power has been applied to the controller.
- **APP HB** - This green LED will light up and blink continuously to indicate the application software is working properly.
- **OS HB** - This green LED will light up and blink continuously to indicate the operating system is working properly.
- **WDOG** - This green LED will light up and stay lit to indicate the operating system is working properly.

Diagnostic LEDs

- **ALARM** - This red LED is a diagnostic blink code LED. It will light up and stay lit when there is an alarm present. The type of alarm will display on the LCD display.
- **STATUS 1** - This red LED is a diagnostic blink code LED. Under normal operation, it should not be blinking. If the LED is blinking non-stop along with Status 2 LED, the controller is resetting factory defaults or there is an output force mode active.
- **STATUS 2** - This red LED is a diagnostic blink code LED. If the software is running, this LED should blink at a rate of 1 blink every 10 seconds. If the LED is blinking non-stop along with Status 1 LED, the controller is resetting factory defaults or there is an output force mode active.

Communication LEDs

- **EBUS** - This yellow LED will blink to signal E-BUS communications.
- **BACNET** - This yellow LED will light up and blink continuously to indicate BACnet® communications.

Relay LEDs

- **RLY4, RLY5** - These green LEDs will light up when the relays are enabled and will stay lit as long as they are active.

Binary Input LEDs

- **BIN1** - This green LED will light up when the Remote Start/Stop contact is closed.
- **BIN2** - This green LED will light up when the Water Flow Switch 1 is closed.
- **BIN3** - This green LED will light up when the Emergency Shutdown contact is closed.
- **BIN5** - This green LED will light up when the Phase Brownout contact is closed.
SECTION 3: TROUBLESHOOTING

LF Chiller Main Controller LED Locations

Figure 9: LF Chiller Main Controller LED Locations
Refrigerant A & B Module LED Diagnostics

Refrigerant A & B Module LEDs

The Chiller Refrigerant A & B Modules are equipped with LEDs that can be used to verify operation and perform troubleshooting. See Figure 10, page 29 for the LED locations. The LEDs associated with these inputs and outputs allow you to see what is active without using a voltmeter. The LEDs and their uses are as follows:

Diagnostic LEDs

STATUS - If the software is running, this LED should blink at a rate of 1 blink per second.

ALARM (on board) - If the module does not receive communications for more than 1 minute, this LED will light up, the relays will turn off, and the Analog Outputs will go to 0 VDC.

ALARM (above LCD display) - This red LED will light up and stay lit when there is an alarm present. The type of alarm will display on the LCD display. The ALARM LED also blinks when the expansion valve is initializing at startup.

COMM - Every time the module receives a valid E-BUS request from the VCCX2 Controller, this LED will blink on and then off, signifying that it received a valid request and responded.

POWER - This LED will light up to indicate that 24 VAC power has been applied to the controller.

Relay LEDs

RLY1 - RLY3 - These green LEDs will light up when the relays are enabled and will stay lit as long as they are active.

Digital Compressor LEDs

COMP1 - This green LED will light up when Digital Compressor 1 is unloading.

COMP2 - This green LED will light up when Digital Compressor 2 is unloading.

Refrigerant A Module Binary Input LEDs

BIN1 - This green LED will light up when the Compressor A1 Status Switch is closed.

BIN2 - This green LED will light up when the Compressor A2 Status Switch is closed.

BIN3 - This green LED will light up when the Condenser A VFD Fault contact is closed.

BIN4 - This green LED will light up when the Circuit A Disable Switch is closed.

Refrigerant B Module Binary Input LEDs

BIN1 - This green LED will light up when the Compressor B1 Status Switch is closed.

BIN2 - This green LED will light up when the Compressor B2 Status Switch is closed.

BIN3 - This green LED will light up when the Condenser B VFD Fault contact is closed.

BIN4 - This green LED will light up when the Circuit B Disable Switch is closed.
SECTION 3: TROUBLESHOOTING

Refrigerant A & B Module LED Locations

Figure 10: Refrigerant Module A & B LED Locations
Chiller Pumping Module LED Diagnostics

Chiller Pumping Module LEDs

The Chiller Pumping Module is equipped with LEDs that can be used to verify operation and perform troubleshooting. See Figure 11, page 31 for the LED locations. The LEDs associated with these inputs and outputs allow you to see what is active without using a voltmeter. The LEDs and their uses are as follows:

Operation LEDs - Factory Troubleshooting

POWER - This green LED will light up to indicate that 24 VAC power has been applied to the controller.

APP HB - This green LED will light up and blink according to what mode the controller is in. See Table 5.

<table>
<thead>
<tr>
<th>No. of Blinks</th>
<th>APP HB LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Off Mode</td>
</tr>
<tr>
<td>2</td>
<td>Economizer Mode</td>
</tr>
<tr>
<td>3</td>
<td>Freeze Mode</td>
</tr>
</tbody>
</table>

OS HB - This green LED will light up and blink continuously to indicate the operating system is working properly.

WDOG - This green LED will light up and stay lit to indicate the operating system is working properly.

Diagnostic LEDs

ALARM - This red LED is a diagnostic blink code LED. It will light up and blink the number of alarms present when there is an alarm(s) present. The type of alarm will display on the LCD display.

STATUS 1 - This red LED is not used.

STATUS 2 - This red LED is not used.

Communication LED

EBUS - This yellow LED will blink to signal E-BUS communications.

COMM1 - When Comm1 is communicating, this yellow LED will turn on to indicate an error condition, either forced on or forced off.

COMM2 - When Comm2 is communicating, this yellow LED will turn on to signal economizer max out.

Relay LEDs

RLY1 - This green LED will light up when the relay is enabled and will stay lit as long as it is active.

Binary Input LEDs

BIN1 - This green LED will light up when the WSE VFD Fault Switch 1 is closed.

BIN4 - This green LED will light up when the Chiller Pump VFD Fault Switch A is closed.

BIN5 - This green LED will light up when the Chiller Pump VFD Fault Switch B is closed.
Figure 11: Chiller Pumping Module LED Locations
Thermistor Sensor Testing

Temperature/Resistance for Thermistor Sensors

The following sensor voltage and resistance table is provided to aid in checking sensors that appear to be operating incorrectly. Many system operating problems can be traced to incorrect sensor wiring. Be sure all sensors are wired per the wiring diagrams in this manual.

If the sensors still do not appear to be operating or reading correctly, check voltage and/or resistance to confirm that the sensor is operating correctly per the tables. Please follow the notes and instructions that appear after the chart when checking sensors.

<table>
<thead>
<tr>
<th>Temperature – Resistance – Voltage for Type III 10 K Ohm Thermistor Sensors</th>
<th>Temp (°F)</th>
<th>Temp (°C)</th>
<th>Resistance (Ohms)</th>
<th>Voltage @ Input (VDC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
<td>-23.33</td>
<td>93333</td>
<td>4.51</td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td>-20.55</td>
<td>80531</td>
<td>4.45</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-17.77</td>
<td>69822</td>
<td>4.37</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-15</td>
<td>60552</td>
<td>4.29</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-12.22</td>
<td>52500</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-9.44</td>
<td>45902</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-6.66</td>
<td>40147</td>
<td>4.002</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-3.88</td>
<td>35165</td>
<td>3.891</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>-1.11</td>
<td>30805</td>
<td>3.773</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>1.66</td>
<td>27140</td>
<td>3.651</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4.44</td>
<td>23874</td>
<td>3.522</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>7.22</td>
<td>21094</td>
<td>3.39</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>18655</td>
<td>3.252</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>11.11</td>
<td>17799</td>
<td>3.199</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>12.22</td>
<td>16956</td>
<td>3.143</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>13.33</td>
<td>16164</td>
<td>3.087</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>14.44</td>
<td>15385</td>
<td>3.029</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>15.55</td>
<td>14681</td>
<td>2.972</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>16.66</td>
<td>14014</td>
<td>2.916</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>17.77</td>
<td>13382</td>
<td>2.861</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>18.88</td>
<td>12758</td>
<td>2.802</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>20</td>
<td>12191</td>
<td>2.746</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>20.55</td>
<td>11906</td>
<td>2.717</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>21.11</td>
<td>11652</td>
<td>2.691</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>21.66</td>
<td>11379</td>
<td>2.661</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>22.22</td>
<td>11136</td>
<td>2.635</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>22.77</td>
<td>10878</td>
<td>2.605</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Temperature/Resistance for Type III 10K Ohm Thermistor Sensors

Thermistor Sensor Testing Instructions

Use the resistance column to check the thermistor sensor while disconnected from the controllers (not powered).

Use the voltage column to check sensors while connected to powered controllers. Read voltage with meter set on DC volts. Place the “-” (minus) lead on GND terminal and the “+” (plus) lead on the sensor input terminal being investigated.

If the voltage is above 4.88 VDC, then the sensor or wiring is open. If the voltage is less than 0.05 VDC, then the sensor or wiring is shorted.
0 - 250 PSI Suction Pressure Transducer Testing for R410A Refrigerant

The Evaporator Coil Temperature is calculated by converting the Suction Pressure to Temperature. The Suction Pressure is obtained by using the 0 - 250 PSI Suction Pressure Transducer, which is connected into the Suction Line of the Compressor.

Use the voltage column to check the Suction Pressure Transducer while connected to the Refrigeration Module(s). The LF Chiller Main Controller and the Refrigeration Module(s) must be powered for this test. Read voltage with a meter set on DC volts. Place the positive lead from the meter on the +5V terminal located on the Module(s) terminal block. Place the negative lead from the meter on the ground (GND) terminal located adjacent to the +5V terminal on the Module(s) terminal block. Use a refrigerant gauge set and/or an accurate electronic thermometer to measure the temperature or suction line pressure near where the Suction Pressure Transducer is connected to the suction line. Measure the Voltage at the +5V and GND terminals and compare it to the appropriate chart depending on the refrigerant you are using. If the temperature/voltage or pressure/voltage readings do not align closely with the chart, your Suction Pressure Transducer is probably defective and will need to be replaced.

See the 0 - 250 PSI Suction Pressure Transducer, Pressure, Temperature, and Voltage Chart for R410A Refrigerant testing. The charts show a temperature range from 20°F to 80°F. For troubleshooting purposes, the DC Voltage readings are also listed with their corresponding temperatures and pressures.

Table 7: Coi Pressure/Voltage/Temp for 0-250 PSI Suction Pressure Transducers - R410A Refrigerant

<table>
<thead>
<tr>
<th>Temperature °F</th>
<th>Pressure PSI</th>
<th>Signal DC Volts</th>
<th>Temperature °F</th>
<th>Pressure PSI</th>
<th>Signal DC Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.19</td>
<td>80.94</td>
<td>1.8</td>
<td>59.03</td>
<td>168.10</td>
<td>3.2</td>
</tr>
<tr>
<td>24.49</td>
<td>87.16</td>
<td>1.9</td>
<td>61.17</td>
<td>174.32</td>
<td>3.3</td>
</tr>
<tr>
<td>27.80</td>
<td>93.39</td>
<td>2.0</td>
<td>63.19</td>
<td>180.55</td>
<td>3.4</td>
</tr>
<tr>
<td>30.99</td>
<td>99.62</td>
<td>2.1</td>
<td>65.21</td>
<td>186.78</td>
<td>3.5</td>
</tr>
<tr>
<td>33.89</td>
<td>105.84</td>
<td>2.2</td>
<td>67.23</td>
<td>193.00</td>
<td>3.6</td>
</tr>
<tr>
<td>36.80</td>
<td>112.07</td>
<td>2.3</td>
<td>69.24</td>
<td>199.23</td>
<td>3.7</td>
</tr>
<tr>
<td>39.71</td>
<td>118.29</td>
<td>2.4</td>
<td>71.15</td>
<td>205.46</td>
<td>3.8</td>
</tr>
<tr>
<td>42.30</td>
<td>124.52</td>
<td>2.5</td>
<td>72.95</td>
<td>211.68</td>
<td>3.9</td>
</tr>
<tr>
<td>44.85</td>
<td>130.75</td>
<td>2.6</td>
<td>74.76</td>
<td>217.91</td>
<td>4.0</td>
</tr>
<tr>
<td>47.39</td>
<td>136.97</td>
<td>2.7</td>
<td>76.57</td>
<td>224.14</td>
<td>4.1</td>
</tr>
<tr>
<td>49.94</td>
<td>143.2</td>
<td>2.8</td>
<td>78.37</td>
<td>230.36</td>
<td>4.2</td>
</tr>
<tr>
<td>52.23</td>
<td>149.42</td>
<td>2.9</td>
<td>80.18</td>
<td>236.59</td>
<td>4.3</td>
</tr>
<tr>
<td>54.50</td>
<td>155.65</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56.76</td>
<td>161.88</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discharge Thermistor Temperature Sensor Testing

The following sensor voltage and resistance table is provided to aid in checking sensors that appear to be operating incorrectly. Many system operating problems can be traced to incorrect sensor wiring. Be sure all sensors are wired per the wiring diagrams in this manual.

If the sensors still do not appear to be operating or reading correctly, check voltage and/or resistance to confirm that the sensor is operating correctly per the table. Please follow the notes and instructions that appear after the chart when checking sensors.

<table>
<thead>
<tr>
<th>Temp (°F)</th>
<th>Temp (°C)</th>
<th>Resistance (K Ohms)</th>
<th>Voltage @ Input (VDC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>-40</td>
<td>2889.60</td>
<td>4.98</td>
</tr>
<tr>
<td>-31</td>
<td>-35</td>
<td>2087.22</td>
<td>4.97</td>
</tr>
<tr>
<td>-22</td>
<td>-30</td>
<td>1522.20</td>
<td>4.96</td>
</tr>
<tr>
<td>-13</td>
<td>-25</td>
<td>1121.44</td>
<td>4.95</td>
</tr>
<tr>
<td>-4</td>
<td>-20</td>
<td>834.72</td>
<td>4.94</td>
</tr>
<tr>
<td>5</td>
<td>-15</td>
<td>627.28</td>
<td>4.92</td>
</tr>
<tr>
<td>14</td>
<td>-10</td>
<td>475.74</td>
<td>4.89</td>
</tr>
<tr>
<td>23</td>
<td>-5</td>
<td>363.99</td>
<td>4.86</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>280.82</td>
<td>4.82</td>
</tr>
<tr>
<td>41</td>
<td>5</td>
<td>218.41</td>
<td>4.77</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>171.17</td>
<td>4.72</td>
</tr>
<tr>
<td>59</td>
<td>15</td>
<td>135.14</td>
<td>4.65</td>
</tr>
<tr>
<td>68</td>
<td>20</td>
<td>107.44</td>
<td>4.57</td>
</tr>
<tr>
<td>77</td>
<td>25</td>
<td>86.00</td>
<td>4.47</td>
</tr>
<tr>
<td>86</td>
<td>30</td>
<td>69.28</td>
<td>4.36</td>
</tr>
<tr>
<td>95</td>
<td>35</td>
<td>56.16</td>
<td>4.24</td>
</tr>
<tr>
<td>104</td>
<td>40</td>
<td>45.81</td>
<td>4.10</td>
</tr>
<tr>
<td>113</td>
<td>45</td>
<td>37.58</td>
<td>3.94</td>
</tr>
<tr>
<td>122</td>
<td>50</td>
<td>30.99</td>
<td>3.77</td>
</tr>
<tr>
<td>131</td>
<td>55</td>
<td>25.68</td>
<td>3.59</td>
</tr>
<tr>
<td>140</td>
<td>60</td>
<td>21.40</td>
<td>3.40</td>
</tr>
<tr>
<td>149</td>
<td>65</td>
<td>17.91</td>
<td>3.20</td>
</tr>
<tr>
<td>158</td>
<td>70</td>
<td>15.07</td>
<td>3.00</td>
</tr>
<tr>
<td>167</td>
<td>75</td>
<td>12.73</td>
<td>2.80</td>
</tr>
<tr>
<td>176</td>
<td>80</td>
<td>10.79</td>
<td>2.59</td>
</tr>
<tr>
<td>185</td>
<td>85</td>
<td>9.20</td>
<td>2.39</td>
</tr>
</tbody>
</table>

Table 8, cont.: Discharge Thermistor Temperature/Resistance

Thermistor Sensor Testing Instructions

Use the resistance column to check the thermistor sensor while disconnected from the controllers (not powered).

Use the voltage column to check sensors while connected to powered controllers. Read voltage with meter set on DC volts. Place the “-” (minus) lead on GND terminal and the “+” (plus) lead on the sensor input terminal being investigated.

If the voltage is above 4.98 VDC, then the sensor or wiring is “open.” If the voltage is less than 0.38 VDC, then the sensor or wiring is shorted.
WARNING: When using a single transformer to power more than one controller or expansion module, the correct polarity must always be maintained between the boards. Failure to observe correct polarity will result in damage to the LF Chiller Controller and its associated modules.

Please carefully read and apply the following information when wiring the LF Chiller Main Controller and its associated modules.

1. All wiring is to be in accordance with local and national electrical codes and specifications.
2. All 24 V AC wiring must be connected so that all ground wires remain common. Failure to follow this procedure can result in damage to the controller and connected devices.
3. Minimum wire size for 24 V AC wiring should be 18-gauge.
4. Minimum wire size for all sensors should be 24-gauge. Some sensors require 2-conductor wire and some require 3-or 4-conductor wire.
5. Minimum wire size for 24 V AC thermostat wiring should be 22 gauge.
6. Be sure that all wiring connections are properly inserted and tightened into the terminal blocks. Do not allow wire strands to stick out and touch adjoining terminals which could potentially cause a short circuit.
7. When communication wiring is to be used to interconnect LF Chiller Main Controllers together or to connect to other communication devices, all wiring must be plenum-rated, minimum 18-gauge, 2-conductor, twisted pair with shield. AAON can supply communication wire that meets this specification and is color coded for the network or local loop. Please consult your AAON distributor for information. If desired, Belden #82760 or equivalent wire may also be used.
8. Before applying power to the LF Main Chiller Controller and its associated modules, be sure to recheck all wiring connections and terminations thoroughly.
Important Wiring Considerations

General
Correct wiring of the LF Chiller Main Controller and its modules is the most important factor in the overall success of the controller installation process. The LF Chiller Main Controller and Modules are factory installed and wired at the AAON® factory. Some of the following information may not apply to your installation if it was pre-wired at the factory. However, if troubleshooting of the controller is required, it is a good idea to be familiar with the system wiring.

Wiring
The LF Chiller Main Controller and associated modules must be connected to an 18-30 VAC power source of the proper size for the calculated VA load requirements. All transformer sizing should be based on the VA rating listed in Tables 9, 10 & 11.

Table 9: LF Chiller Main Controller Electrical and Environmental Requirements

<table>
<thead>
<tr>
<th>Control Device</th>
<th>Voltage</th>
<th>VA Load</th>
<th>Operating Temperature</th>
<th>Humidity (Non-Condensing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main LF Chiller Controller</td>
<td>18-30VAC (25%/-15%), Class 2</td>
<td>15</td>
<td>-30°F to 150°F</td>
<td>0-95% RH</td>
</tr>
<tr>
<td>Inputs</td>
<td>Resistive Inputs require 10KΩ Type 3 Thermistor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outputs</td>
<td>Relay Outputs: 1 Amp maximum per output</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10: Chiller Pumping Module Electrical and Environmental Requirements

<table>
<thead>
<tr>
<th>Control Device</th>
<th>Voltage</th>
<th>VA Load</th>
<th>Operating Temperature</th>
<th>Humidity (Non-Condensing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiller Pumping Module</td>
<td>18-30VAC (25%/-15%), Class 2</td>
<td>15</td>
<td>-30°F to 150°F</td>
<td>0-95% RH</td>
</tr>
<tr>
<td>Inputs</td>
<td>Resistive Inputs require 10KΩ Type 3 Thermistor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outputs</td>
<td>Relay Outputs: 1 Amp maximum per output</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11: Chiller Refrigerant Module Environmental Requirements

<table>
<thead>
<tr>
<th>Control Device</th>
<th>Voltage</th>
<th>VA Load</th>
<th>Operating Temperature</th>
<th>Humidity (Non-Condensing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiller Refrigerant Module</td>
<td>18-30VAC (25%/-15%), Class 2</td>
<td>18</td>
<td>-30°F to 150°F</td>
<td>0-95% RH</td>
</tr>
<tr>
<td>Inputs</td>
<td>Resistive Inputs require 10KΩ Type 3 Thermistor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outputs</td>
<td>Relay Outputs: 1 Amp maximum per output</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LCD Display Screen & Navigation Keys

The LCD display screens and buttons allow you to view status and alarms, enable force modes, and make BACnet® configuration changes. See Figure 12, below and refer to Table 12 for Navigation Key functions. The keys also have editing functions. Refer to Table 13 for Editing functions.

![Figure 12: LCD Display and Navigation/Editing Keys](image)

<table>
<thead>
<tr>
<th>NAVIGATION KEY</th>
<th>KEY FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENU</td>
<td>Use the MENU key to move through screens within Main Menu categories and return to the Main Menu while at other screens.</td>
</tr>
<tr>
<td>UP</td>
<td>Use this key to adjust setpoints and change configurations.</td>
</tr>
<tr>
<td>DOWN</td>
<td>Use this key to adjust setpoints and change configurations.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Use the ENTER key to navigate through the Main Menu Screen categories.</td>
</tr>
</tbody>
</table>

Table 12: Navigation Key Functions

<table>
<thead>
<tr>
<th>EDITING KEY</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP or DOWN</td>
<td>Use the UP or DOWN key to enter editing mode on a user-adjustable screen. Edit Mode is indicated by the underscore appearing on the screen. NOTE: Entering Edit Mode will also adjust the value up one (UP key) or down one (DOWN key), so you may have to readjust the value.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Use the ENTER key to move through the digits in the screen when editing a numeric value. An extended press of the ENTER key saves your edits no matter the location of the editing cursor within the digits. Press the ENTER key to save a non-numeric value - such as Hi Speed Network.</td>
</tr>
<tr>
<td>MENU</td>
<td>The MENU key cancels editing when in Edit Mode. The screen you were editing will return to its original value and the underscore will disappear. A second press of the MENU key will return you to the Main Menu.</td>
</tr>
</tbody>
</table>

Table 13: Editing Key Functions
Main Screens Map

Refer to the following map when navigating through the LF Chiller Main Controller Screens. The first screen is an initialization screen. To scroll through the rest of the screens, press the <MENU> button.

Press \[M\] to go to the Settings Screen.

Press \[\] to scroll through the Settings Screens.

Press \[M\] to go to the Glycol Screen.

Press \[\] to scroll through the Glycol Screens.

Press \[M\] to go to the Status Screen.

Press \[\] to scroll through the Status Screens.

Press \[M\] to go to the Alarms Screen.

Press \[\] to scroll through the Alarms.

Press \[M\] to return to the first Main Menu Screen.

Settings Screens

Refer to the following map when navigating through the Settings Screens. From the Settings Screen, press <ENTER> to scroll through the screens.

Settings

Unit ID#
Addr #1-59

UNIT ADDRESS
Unit address. Valid range is 1-59. Default is 1.

485-Baud
Hi Speed or Lo Speed

BAUD RATE SPEED
485 baud rate speed. Valid range Hi Speed or Lo Speed. Default is Hi Speed.

MAC Addr 0 TO 127

BACnet® - CURRENT MAC ADDRESS
Valid range is 0 to 127. Default is 1.

The <ENTER> key moves the cursor between the digit fields starting with the ones field. Once the cursor is under a field, use the <UP> & <DOWN> arrow keys to select a number between 0 and 9.
APPENDIX A - LF CHILLER MAIN CONTROLLER LCD SCREENS

Settings Screens & Glycol Screens

Glycol Screens

Refer to the following map when navigating through the Glycol Screens. From the Glycol Screen, press <ENTER> to scroll through the screens.

- **DEVICEID**
 - **DEVICEID**
 - **15000**

 BACnet® - CURRENT DEVICE ID
 - A Device ID of up to 7 digits can be entered.
 - The <ENTER> key moves the cursor between the digit fields starting with the ones field. Once the cursor is under a field, use the <UP> & <DOWN> arrow keys to select a number between 0 and 9.

- **MSTPBaud**
 - **38400**

 BACnet® - CURRENT BAUD RATE
 - 9600, 19200, 38400, 57600, 76800. Default is 38400.

- **EBUS**
 - **Lo Speed or Hi Speed**

 E-BUS COMMUNICATIONS
 - Hi Speed or Lo Speed. Default is Hi Speed.

- **GLYCOL PERCENTAGE**
 - **Glycol at 0%**

 - Valid percentages are 0, 15, 20, 25, 30. Default is 0%.

- **KEY CODE**
 - **Key Code**
 - **12345678**

 KEY CODE
 - The <ENTER> key moves the cursor between the digit fields starting with the ones field. Once the cursor is under a field, use the <UP> & <DOWN> arrow keys to select a number between 0 and 9.

- **HASH CODE**
 - **HashCode**
 - **0**

 HASH CODE
 - The <ENTER> key moves the cursor between the digit fields starting with the ones field. Once the cursor is under a field, use the <UP> & <DOWN> arrow keys to select a number between 0 and 9.
Status Screens

Refer to the following map when navigating through the Status Screens. From the Status Screen, press <ENTER> to scroll through the screens.

Status

OperMode
OFF MODE

OPERATION MODE
This screen displays the current mode of operation. Options are:

• OFF MODE
• RUN MODE
• HOL OFF
• HOL RUN
• START-UP
• SHUTDOWN
• LOCKOUT

CW Outlet
42.0°

CHILLER WATER OUTLET TEMPERATURE

OA Temp
76.0°

OUTDOOR AIR TEMPERATURE

CW Inlet
65.0°

CHILLER WATER INLET TEMPERATURE
Alarm Screens

If there are no Alarms, the Alarm Screen will display “No Alarms.” If there are alarms present, the screen will display, “Alarms.” You can press <ENTER> to scroll through the alarms or you can let the alarms automatically scroll on the screen.

NO ALARMS
This will be shown if there are no current alarms.

ACTIVE ALARMS!
This will display if there are active alarms.

Inlet SENSOR: The chiller water inlet temperature sensor has failed.

Outlet SENSOR: The chiller water outlet temperature sensor has failed.

OAT SENSOR: The outdoor air temperature sensor has failed.

PHASE LOSS: A phase loss has occurred.

EMG SHUTDOWN: An emergency shutdown has occurred.

SEC OUT NO SENSE: The secondary heat exchanger outlet temperature sensor has failed.

H2OProof ALARM: Water flow switch 1 or 2 has been disabled.

WaterOut TOO HIGH: The chiller water outlet temperature has risen above the chiller water temperature setpoint.

WaterOut CUTOFF: The chiller water outlet temperature has risen above the chiller water temperature cutoff setpoint.

REFRIG 1 MISSING: Refrigeration Module 1 is not communicating.

REFRIG 2 MISSING: Refrigeration Module 2 is not communicating.

CPM Mod MISSING: The Chiller Pumping Module is not communicating.

REFRIG 1 ALARM: Refrigeration Module 1 has an alarm.

REFRIG 2 ALARM: Refrigeration Module 2 has an alarm.

CPM Mod ALARM: Chiller Pumping Module has an alarm.

UNKNOWN ALARM: There is an unknown alarm.
Main Screens Map

Refer to the following map when navigating through the Chiller Refrigerant Module LCD Main Screens. To scroll through the screens, press the <MENU> button.

Press ✔ to scroll through the CHILLER REFRIG Screens.

Press M to go to STATUS MENU Screen.

Press ✔ to scroll through STATUS MENU Screens.

Press M to go to SENSOR MENU Screen.

Press ✔ to scroll through SENSOR MENU Screens.

Press M to return to the SETPOINT STATUS Screen.

Press ✔ to scroll through SETPOINT STATUS Screens.

Press M to go to ALARM WARNINGS Screen.

Press ✔ to scroll through ALARM WARNINGS Screens.

Press ✔ to go to ALARM FAULTS Screen.

Press ✔ to scroll through ALARM FAULTS Screens.

Press M to return to the ALARM LOCKOUTS Screen.

Press ✔ to scroll through ALARM LOCKOUTS Screens.
Module Screens

Refer to the following map when navigating through the Chiller Refrigerant Module Screens. From the CHILLER Main Screen, press <ENTER> to scroll through the screens.

- CHILLER
 1121vXXX

- EBUS COM
 ####

E-BUS COMMUNICATION DIAGNOSTICS
Number of COMM packets received.

- SOFTWARE
 1121vXXX

- ADDRESS
 #(#)

CURRENT BOARD ADDRESS
Configure the address according to which board address this module represents—1, 2, 3, 4, 5, 6
Number in parentheses is E-BUS address.
Module 1 is 160, Module 2 is 161, Module 3 is 162, Module 4 is 163, Module 5 is 164, Module 6 is 165

Status Menu Screens

Refer to the following map when navigating through the Status Screens. From the STATUS MENU Screen, press <ENTER> to scroll through the screens.

- STATUS MENU

- MODE COOLING

OPERATING MODE STATUS
COOLING or OFF

- COMP 1
 100%

COMPRESSOR 1 STATUS

- COMP 2
 ON/OFF

COMPRESSOR 2 STATUS
ON/OFF

- COND%
 100%

CONDENSER STATUS
100%
Status Menu & Sensor Menu Screens

Sensor Menu Screens

Refer to the following map when navigating through the Sensor Screens. From the SENSOR MENU Screen, press <ENTER> to scroll through the screens.

EXPANSION VALVE STATUS

EXV%
100%

COMPRESSOR 1 MINIMUM RUN TIME IN SECONDS

C1MINRUN
XXX

COMPRESSOR 1 MINIMUM OFF TIME IN SECONDS

C1MINOFF
XXX

COMPRESSOR 2 MINIMUM RUN TIME IN SECONDS

C2MINRUN
XXX

COMPRESSOR 2 MINIMUM OFF TIME IN SECONDS

C2MINOFF
XXX

SUCTION PRESSURE READING FROM INPUT

SUCTION
XXX PSIG

DISCHARGE PRESSURE READING FROM INPUT

DISCHARGE
XXX PSIG

LIQUID LINE PRESSURE READING FROM INPUT

LIQUID
XXX PSIG

SATURATION TEMPERATURE CALCULATION

SATURATN
XX.X°F

DISCHARGE TEMPERATURE SENSOR CALCULATION

DISCCALC
XX.X°F
Sensor Menu Screens

- **LIQDCALC**
 - XX.X°F
 - Liquid line temperature sensor calculation

- **EVAPTEMP**
 - XX.X°F
 - Evaporation temperature reading from input

- **DISCTEMP**
 - XXX.X°F
 - Discharge temperature reading from input

- **LIQDTEMP**
 - XXX.X°F
 - Liquid line temperature reading from input

- **LVGH20**
 - XXX.X°F
 - Leaving water temperature

- **SUPRHEAT**
 - XX.X°F
 - Superheat temperature

- **DISCH SH**
 - XX.X°F
 - Discharge superheat temperature

- **SUBCOOL**
 - XX.X°F
 - Subcool temperature
Setpoint Status Screens
Refer to the following map when navigating through the Screens. From the SETPOINT STATUS Screen, press <ENTER> to scroll through the screens.

Alarm Screens
If an alarm is present, the ALARM LED above the LCD display will light up red and blink. The Alarms will display and scroll automatically from the ALARMS screen when alarms are present.

Low Suct Pressure: Low Suction Pressure
Low Suct No Start: Low Suction Pressure Startup
High Dischpsi: High Discharge Pressure Level 1
High Dischpsi: High Discharge Pressure Level 2
Dischpsi Nodeject: Discharge Pressure not detected
High Suprheat: High Superheat
Dlt Nodeject: Discharge Line Temperature Sensor not detected
Condensr Overamps: Condenser VFD Overcurrent
APPENDIX B - REFRIGERANT MODULE LCD SCREENS

Alarm Menu Screens

- **ALARM FAULTS**
 - **NO FAULTS**
 - This will be shown if there are no current faults.
 - **FAULTS!**
 - This will display if there are active faults.

- **ALARM LOCKOUTS**
 - **NO LOCKOUTS**
 - This will be shown if there are no current lockouts.
 - **LOCKOUTS!**
 - This will display if there are active lockouts.

- **LOW SUCT PRESSURE**: Low Suction Pressure
- **UNSAFE SUCT PSI**: Unsafe Suction Pressure
- **HIGH PSI TRIP**: High Discharge Pressure Trip
- **HIGH PSI TRIP C2**: Compressor 2 Fail from High Discharge Pressure
- **C1 NO START**: Compressor 1 not running
- **C2 NO START**: Compressor 2 not running
- **LOW SUPRHEAT**: Low Superheat
- **HIGH DISCTEMP**: High Discharge Line Temperature
- **C1 FALSE ACTIVE**: Compressor 1 False Active
- **C2 FALSE ACTIVE**: Compressor 2 False Active
- **COMM TIMEOUT**: Communication Loss
- **HIGH SUPRHEAT**: High Superheat
- **SLT NODETECT**: Cannot detect Suction Line Temperature Sensor
- **SUCT PSI NODETECT**: Cannot detect Suction Pressure Temperature Sensor
- **HIGH SAT TEMP**: High Saturation Temperature
- **C1 OVER CURRENT**: Compressor 1 Overcurrent
- **C2 OVER CURRENT**: Compressor 2 Overcurrent
- **C1 LOW CURRENT**: Compressor 1 Undercurrent
- **C2 LOW CURRENT**: Compressor 2 Undercurrent

- **SUFT PSI LOCKOUT**: Low/Unsafe Suction Pressure
- **LOW DISC PSI L/O**: Low Discharge Pressure Lockout
- **HIGHDISC PSI L/O**: High Discharge Pressure Lockout
- **LOW SH LOCKOUT**: Low Superheat Lockout
- **HIGH SH LOCKOUT**: High Superheat Lockout
- **HIGHDISC TEMP L/O**: High Discharge Line Temperature
- **C1 >AMPS LOCKOUT**: Compressor 1 Overcurrent
- **C2 >AMPS LOCKOUT**: Compressor 2 Overcurrent
- **HIGH SAT LOCKOUT**: High Saturation Temperature
- **C1 <AMPS LOCKOUT**: Compressor 1 Undercurrent Lockout
- **C2 <AMPS LOCKOUT**: Compressor 2 Undercurrent Lockout
Main Screens Map

Refer to the following map when navigating through the Chiller Pumping Module Main Screens. To scroll through the screens, press the <MENU> button.

- Press ✔️ to scroll through the CPM Screens.
- Press ✔️ to go to SYSTEM STATUS Screen.
- Press ✔️ to scroll through SYSTEM STATUS Screens.
- Press ✔️ to go to SENSOR STATUS Screen.
- Press ✔️ to scroll through SENSOR STATUS Screens.
- Press ✔️ to go to ALARMS Screen.
- Press ✔️ to scroll through the ALARMS Screens.
- Press ✔️ to go to ALARM HISTORY Screen.
- Press ✔️ to scroll through the ALARM HISTORY Screens.
- Press ✔️ to go to the SETPOINT STATUS Screen.
- Press ✔️ to scroll through the SETPOINT STATUS Screens.

Module Screens

Refer to the following map when navigating through the Chiller Pumping Module Screens. From the WSE Main Screen, press <ENTER> to scroll through the screens.

- Press ✔️ to go to the SETPOINT STATUS Screen.
- Press ✔️ to go to ALARM HISTORY Screen.
- Press ✔️ to go to ISOLATED NO/YES Screen.
- Press ✔️ to go to SOFTWARE AND SOFTWARE VERSION Screen.
- Press ✔️ to go to CURRENT EBUS ADDRESS Screen.
- Press ✔️ to go to WSE ENABLED/DISABLED Screen.

Isolated Glycol Loop

This screen will be present if WSE is enabled. It will display Yes if the module is configured to control an isolated (glycol) loop.
APPENDIX C - CHILLER PUMPING MODULE LCD SCREENS

Module Screens

TEMP CFG

F OR C

FAHRENHEIT OR CELSIUS
This screen will be present if WSE is enabled.

CP

Enabled/ Disabled

CHILLER PUMP OPERATION STATUS

CP CFG

CHILLER PUMP CONFIGURATION
This screen will be present only if the Chiller Pump is enabled.
PRIM FIXED = Primary only with Fixed Speed Pump
PRIM VAR = Primary only with Variable Speed Pump
PRIM+SEC = Primary + Secondary Pumps
A+B+SEC = Primary A + Primary B + Secondary Pumps

MAX BLDG

XXX PSI

MAXIMUM BUILDING PUMP PRESSURE
This screen will be present only if the Chiller Pump is enabled and configuration is not primary fixed speed pump. It indicates the maximum pressure allowed out of the building pump before failing.

DIF BLDG

XXX PSI

TARGET DIFFERENTIAL PRESSURE
This screen will be present only if the Chiller Pump is enabled and configuration is not primary fixed speed pump. It indicates the target differential pressure for the variable speed pump control.

FRZ PROT

Enabled/ Disabled

FREEZE PROTECTION STATUS
This screen will be present only if both the WSE and Chiller Pump are enabled. It indicates if the pumps will be enabled to self operation when the WSE goes into freeze protection.

SECONDARY

SINGLE/DUAL

SECONDARY PUMP CONFIGURATION
This screen will be present only if the Chiller Pump is enabled and configured to have a secondary pump.
SINGLE = Only one Secondary Pump
DUAL = Has Backup Pump

PRIMARYA

SINGLE/DUAL

PRIMARY A PUMP CONFIGURATION
This screen will be present only if the Chiller Pump is enabled.
SINGLE = Only one Primary A Pump
DUAL = Has Backup Pump

PRIMARYB

SINGLE/DUAL

PRIMARY B PUMP CONFIGURATION
This screen will be present only if the Chiller Pump is enabled.
SINGLE = Only one Primary B Pump
DUAL = Has Backup Pump
System Status Screens

Refer to the following map when navigating through the System Status Screens. From the SYSTEM STATUS Screen, press `<ENTER>` to scroll through the screens.

SYSTEM STATUS

WSE MODE

CURRENT OPERATING MODE
Possible values are OFF or ECONO

PRIM VLV XXX%

PRIMARY 3-WAY VALVE POSITION
This screen will only be present if WSE is enabled.

FAN STAT OFF/ON

FAN OPERATING STATUS
This screen will only be present if WSE is enabled.

CURRENT FAN VFD DRIVE LEVEL
This screen will only be present if WSE is enabled.

CP MODE

CURRENT CHILLER RUN COMMAND
This screen will be present only if the Chiller Pump is enabled.

- OFF = No Pump command is currently active.
- PRIM A = Primary A is commanded to run
- PRIM B = Primary B is commanded to run
- PRIM A+B = Both A & B are commanded to run.

PRMA PMP ON/OFF

PRIMARY A PUMP CURRENT RUN STATUS
This screen will be present only if the Chiller Pump is enabled.
Will display OFF or PUMPING.

SEC VLV XXX%

SECONDARY 3-WAY VALVE POSITION
This screen will only be present if WSE is enabled and is configured to have an isolated (glycol) loop.

SEC PMP ON/OFF

SECONDARY PUMP CURRENT RUN STATUS
This screen will be present only if the Chiller Pump is enabled and configured to have a secondary pump.
Will display OFF or PUMPING.
System Status & Sensor Status Screens

Sensor Status Screens

Refer to the following map when navigating through the Sensor Status Screens. From the SENSOR STATUS Screen, press <ENTER> to scroll through the screens.

PRMB PMP
ON/OFF

PRIMARY B PUMP CURRENT RUN STATUS
This screen will be present only if the Chiller Pump is enabled and configured as Primary Only with Fixed Speed Pump.
Will display OFF or PUMPING.

BLDG PMP
VFD XXX%

BUILDING PUMP VFD CURRENT DRIVE STATUS
This screen will be present only if the Chiller Pump is enabled and configured as Primary Only with Fixed Speed Pump.
Will display OFF or PUMPING.

BLDG DIF
XXX PSI

CALCULATED DIFFERENTIAL BUILDING PRESSURE
This screen will be present only if the Chiller Pump is enabled and configured as Primary Only with Fixed Speed Pump.
Will display OFF or PUMPING.

PRIM OUT
XXX.X°F

PRIMARY MIXING VALVE OUTLET TEMPERATURE
This screen is only present if WSE is enabled.

PRIM IN
XXX.X°F

PRIMARY MIXING VALVE FEED TEMPERATURE
This screen is only present if WSE is enabled.

SEC IN
XXX.X°F

HEAT EXCHANGER SECONDARY SIDE INLET TEMPERATURE
This screen is only present if WSE is enabled and the module is configured for isolated operation. It shows the heat exchanger secondary side inlet temperature (F/C).

SEC OUT
XXX.X°F

HEAT EXCHANGER SECONDARY SIDE OUTLET TEMPERATURE
This screen is only present if WSE is enabled and the module is configured for isolated operation. It shows the heat exchanger secondary side outlet temperature (F/C).
Sensor Status Screens

PRIMARY A FLOW SWITCH INPUT STATUS
This screen is only present if CP is enabled. It shows the Primary A flow switch input status as “FLOWING” or “NO FLOW”.

PRIMARY B FLOW SWITCH INPUT STATUS
This screen is only present if CP is enabled. It shows the Primary B flow switch input status as “FLOWING” or “NO FLOW”.

BUILDING SUCTION PRESSURE SENSOR TEMPERATURE
This screen is only present if CP is enabled and not configured for primary only w/fixed speed pumps. It shows the building suction pressure sensor temperature reading.

BUILDING DISCHARGE PRESSURE SENSOR TEMPERATURE
This screen is only present if CP is enabled and not configured for primary only w/fixed speed pumps. It shows the building discharge pressure sensor.
Alarms Screen

If an alarm is present, the ALARM LED above the LCD display will light up red and blink. The Alarms will display and scroll automatically from the ALARMS screen when alarms are present.

NO ALARMS
This will be shown if there are no current alarms.

ACTIVE ALARMS!
This will display if there are active alarms.

WSE NOT OPERATE: The WSE is not operating.

IN FRZ PROTECT: In Freeze Protection Mode.

PRIM OUT NO SENSE: The primary mixing valve outlet temperature sensor has failed.

PRIM IN NO SENSE: The primary mixing valve feed temperature sensor has failed.

SEC IN NO SENSE: The secondary heat exchanger inlet temperature sensor has failed.

SEC OUT NO SENSE: The secondary heat exchanger outlet temperature sensor has failed.

FAN VFD FAULT: Fan VFD Fault detected.

SUC SNSR FAULT: The building suction pressure sensor is determined to be faulty.

DIS SNSR FAULT: The building discharge pressure sensor is determined to be faulty.

PMP1 VFD FAULT: First VFD pump fault detected.

PMP2 VFD FAULT: Second VFD pump fault detected.

PAP1 LOCKOUT: Primary A Pump 1 locked out.

PAP2 LOCKOUT: Primary A Pump 2 locked out.

SEC1 LOCKOUT: Secondary Pump 1 locked out.

SEC2 LOCKOUT: Secondary Pump 2 locked out.

PBP1 LOCKOUT: Primary B Pump 1 locked out.

PBP2 LOCKOUT: Primary B Pump 2 locked out.

CP SYSTM LOCKOUT: Chiller pumping system is locked out.

COMM FAULT: Communications have failed. For testing purposes, the comm fault trigger can be disabled. The disable is not stored and self-clears when power is removed.
Alarm History Screen

The ALARM HISTORY screen will display the last occurrence of the given alarm in minutes if the last occurrence was 60 minutes or less, hours if the last occurrence was 72 hours or less, days if the last occurrence was 30 days or less and 0 if the last occurrence was over 30 days or the alarm has not been triggered since power up. Alarm histories are only kept as long as the unit is powered; they clear on loss of power.

- **WSE NOOP ## MIN**: This screen is only present if WSE is enabled. Last occurrence of WSE is not operating alarm.
- **FRZ PROT ## HR**: This screen is only present if WSE is enabled. Last occurrence of freeze protection mode alarm.
- **PRIM OUT ## DAY**: This screen is only present if WSE is enabled. Last occurrence of primary mixing valve outlet temperature sensor failure detection.
- **PRIM IN ## MIN**: This screen is only present if WSE is enabled. Last occurrence of primary mixing valve feed temperature sensor failure detection.
- **SEC IN ## MIN**: This screen is only present if WSE is enabled and the module is configured for isolated operation. It shows last occurrence of secondary heat exchanger inlet temperature sensor failure.
- **SEC OUT ## DAY**: This screen is only present if WSE is enabled and the module is configured for isolated operation. It shows last occurrence of secondary heat exchanger inlet temperature sensor failure.

- **FAN VFD ## MIN**: This screen is only present if WSE is enabled. Last occurrence of a fan VFD fault.
- **PMP1 VFD ## HR**: This screen is only present if CP is enabled. Time since occurrence of a VFD pump 1 fault.
- **PMP2 VFD ## DAY**: This screen is only present if CP is enabled and not configured for primary only w/ fixed speed pump. Time since occurrence of a VFD pump 2 fault.
- **PAP1 LCK ## MIN**: This screen is only present if CP is enabled. Time since occurrence of a primary A, pump 1 lockout.
- **PAP2 LCK ## HR**: This screen is only present if CP is enabled and primary A is configured for backup. Time since occurrence of a primary A, pump 2 lockout.
- **SEC1 LCK ## DAY**: This screen is only present if CP is enabled and configured for a secondary. Time since occurrence of a secondary pump 1 lockout.
- **SEC2 LCK ## MIN**: This screen is only present if CP is enabled, configured for a secondary and the secondary is configured for backup. Time since occurrence of a secondary pump 2 lockout.
- **PBP1 LCK ## HR**: This screen is only present if CP is enabled and is configured for primary A + primary B + secondary. Time since occurrence of a primary B, pump 1 lockout.
- **PBP2 LCK ## DAY**: This screen is only present if CP is enabled, is configured for primary A + primary B + secondary and primary B is configured for backup. Time since occurrence of a primary B, pump 2 lockout.
- **CP LCK ## MIN**: This screen is only present if CP is enabled. Time since occurrence of a chiller pumping system lockout.
- **COMM FLT ## HR**: Last occurrence of a communications fault.
Setpoint Status Screens

Refer to the following map when navigating through the Screens.
From the SETPOINT STATUS Screen, press <ENTER> to scroll through the screens.

SETPOINT STATUS

FAN VFD MINIMUM OPERATING SPEED IN PERCENT

This screen is only present if WSE is enabled.
Range is 0 to 50%

PRIM OUT XX.X°F

MIN VLV FAN ##%

PRIMARY MIXING VALVE OUTLET TEMPERATURE TARGET SETPOINT

This screen is only present if WSE is enabled.
Range is 0.0 to 70.0°F

FRZ PROT XX.X°F

FREEZE PROTECT SETPOINT FOR THE PRIMARY FEED SENSOR

This screen is only present if WSE is enabled.
Range is 0.0 to 50.0°F

FAN DLY ## SEC

MINIMUM CONTROLLING MIXING VALVE POSITION BELOW WHICH FANS WILL DISABLE

This screen is only present if WSE is enabled.
Range is 0 to 95%

MIN VLV

SLW OPEN RATE ##M

PRIMARY MIXING VALVE SLOW OPENING RATE USED IN BRINGING WSE ON-LINE WITH COMPRESSORS RUNNING

This screen is only present if WSE is enabled.
Range is 1 to 30 minutes

SLW CLOS RATE ##M

PRIMARY MIXING VALVE SLOW CLOSING RATE USED IN DISABLING WSE WHILE COMPRESSORS ARE RUNNING

This screen is only present if WSE is enabled.
Range is 1 to 30 minutes

MIN VLV

SLW CLOS RATE ##M

PRIMARY MIXING VALVE SLOW CLOSING RATE USED IN DISABLING WSE WHILE COMPRESSORS ARE RUNNING

This screen is only present if WSE is enabled.
Range is 1 to 30 minutes
Setpoint Status Screens

HEAT EXCHANGER SECONDARY SIDE INLET TEMPERATURE SETPOINT
This screen is only present if WSE is enabled and the module is configured for isolated operation. Range is 0.0 to 50.0°F

TARGET DIFFERENTIAL BUILDING PRESSURE
This screen is only present if CP is enabled and not configured for primary only w/fixed speed pumps. Range is 0 to 100 PSI.

MAXIMUM BUILDING PRESSURE
This screen is only present if CP is enabled and not configured for primary only w/fixed speed pumps. It sets the maximum allowed building pressure from 0 to 200 PSI.
Programming Note: Use Settings Menu In LCD Display To Program The BACnet® Settings.

MS/TP Connection To BACnet®

Typical Terminal Blocks. All Wiring To Be R+ To R+, SH (G) To SH (G) & T- To T–

Size Transformer For Correct Total Load. Main LF Chiller Controller = 15 VA

Wiring Notes:
1.) All wiring to be in accordance with local and national electrical codes and specifications.

2.) All communication wiring to be 18 gauge minimum, 2 conductor twisted pair with shield. Use Belden #82760 or equivalent.

Figure 13: BACnet® Connection to MS/TP Network
BACnet® Analog Inputs

Table 13: BACnet® MS/TP Parameter Analog Inputs

<table>
<thead>
<tr>
<th>Point Type</th>
<th>Number</th>
<th>BACnet® Point Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>1</td>
<td>Application Version</td>
</tr>
<tr>
<td>AI</td>
<td>2</td>
<td>Entering Water Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>3</td>
<td>Leaving Water Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>4</td>
<td>Active Leaving Water Setpoint</td>
</tr>
<tr>
<td>AI</td>
<td>5</td>
<td>Outdoor Air Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>6</td>
<td>WSE Primary Feed Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>7</td>
<td>WSE Primary Outlet Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>8</td>
<td>WSE Primary 3-Way Valve</td>
</tr>
<tr>
<td>AI</td>
<td>9</td>
<td>WSE VFD Speed</td>
</tr>
<tr>
<td>AI</td>
<td>10</td>
<td>Pump Discharge Pressure</td>
</tr>
<tr>
<td>AI</td>
<td>11</td>
<td>Pump Suction Pressure</td>
</tr>
<tr>
<td>AI</td>
<td>12</td>
<td>Pump Differential Pressure</td>
</tr>
<tr>
<td>AI</td>
<td>13</td>
<td>Pump VFD Speed</td>
</tr>
<tr>
<td>AI</td>
<td>14</td>
<td>Active Superheat Setpoint</td>
</tr>
<tr>
<td>AI</td>
<td>15</td>
<td>Active Head Pressure Setpoint</td>
</tr>
<tr>
<td>AI</td>
<td>16</td>
<td>Active Coil Temperature Setpoint</td>
</tr>
<tr>
<td>AI</td>
<td>17</td>
<td>A-Suction Pressure</td>
</tr>
<tr>
<td>AI</td>
<td>18</td>
<td>A-Discharge Pressure</td>
</tr>
<tr>
<td>AI</td>
<td>19</td>
<td>A-Liquid Line Pressure</td>
</tr>
<tr>
<td>AI</td>
<td>20</td>
<td>A-Calculated Saturation Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>21</td>
<td>A-Calculated Discharge Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>22</td>
<td>A-Calculated Liquid Line Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>23</td>
<td>A-Suction Line Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>24</td>
<td>A-Discharge Line Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>25</td>
<td>A-Liquid Line Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>26</td>
<td>A-Superheat Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>27</td>
<td>A-Discharge Superheat Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>28</td>
<td>A-Sub-cooling Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>29</td>
<td>A-Compressor A1 Percentage</td>
</tr>
<tr>
<td>AI</td>
<td>30</td>
<td>A-Compressor A2 Percentage</td>
</tr>
<tr>
<td>AI</td>
<td>31</td>
<td>A-Condenser Percentage</td>
</tr>
<tr>
<td>AI</td>
<td>32</td>
<td>A-EXV Position</td>
</tr>
<tr>
<td>AI</td>
<td>33</td>
<td>A-Compressor A1 Current</td>
</tr>
<tr>
<td>AI</td>
<td>34</td>
<td>A-Compressor A2 Current</td>
</tr>
<tr>
<td>AI</td>
<td>35</td>
<td>B-Suction Pressure</td>
</tr>
<tr>
<td>AI</td>
<td>36</td>
<td>B-Discharge Pressure</td>
</tr>
<tr>
<td>AI</td>
<td>37</td>
<td>B-Liquid Line Pressure</td>
</tr>
<tr>
<td>AI</td>
<td>38</td>
<td>B-Calculated Saturation Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>39</td>
<td>B-Calculated Discharge Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>40</td>
<td>B-Calculated Liquid Line Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>41</td>
<td>B-Suction Line Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>42</td>
<td>B-Discharge Line Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>43</td>
<td>B-Liquid Line Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>44</td>
<td>B-Superheat Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>45</td>
<td>B-Discharge Superheat Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>46</td>
<td>B-Sub-cooling Temperature</td>
</tr>
<tr>
<td>AI</td>
<td>47</td>
<td>B-Compressor B1 Percentage</td>
</tr>
<tr>
<td>AI</td>
<td>48</td>
<td>B-Compressor B2 Percentage</td>
</tr>
<tr>
<td>AI</td>
<td>49</td>
<td>B-Condenser Percentage</td>
</tr>
<tr>
<td>AI</td>
<td>50</td>
<td>B-EXV Position</td>
</tr>
<tr>
<td>AI</td>
<td>51</td>
<td>B-Compressor B1 Current</td>
</tr>
<tr>
<td>AI</td>
<td>52</td>
<td>B-Compressor B2 Current</td>
</tr>
</tbody>
</table>

Table 13, continued: BACnet® MS/TP Parameter Analog Inputs
BACnet® Analog Values

<table>
<thead>
<tr>
<th>BACnet® Point Type</th>
<th>Number</th>
<th>Limit Range</th>
<th>BACnet® Point Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>AV</td>
<td>2</td>
<td>35</td>
<td>60</td>
</tr>
<tr>
<td>AV</td>
<td>3</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>AV</td>
<td>4</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>AV</td>
<td>5</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>AV</td>
<td>6</td>
<td>-20</td>
<td>40</td>
</tr>
<tr>
<td>AV</td>
<td>7</td>
<td>35</td>
<td>60</td>
</tr>
<tr>
<td>AV</td>
<td>8</td>
<td>35</td>
<td>60</td>
</tr>
<tr>
<td>AV</td>
<td>9</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>AV</td>
<td>10</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>AV</td>
<td>11</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>AV</td>
<td>12</td>
<td>-100</td>
<td>100</td>
</tr>
<tr>
<td>AV</td>
<td>13</td>
<td>-100</td>
<td>100</td>
</tr>
<tr>
<td>AV</td>
<td>14</td>
<td>-100</td>
<td>100</td>
</tr>
<tr>
<td>AV</td>
<td>15</td>
<td>150</td>
<td>475</td>
</tr>
<tr>
<td>AV</td>
<td>16</td>
<td>5</td>
<td>600</td>
</tr>
<tr>
<td>AV</td>
<td>17</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>AV</td>
<td>18</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>AV</td>
<td>19</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>AV</td>
<td>20</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>AV</td>
<td>21</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>AV</td>
<td>22</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>AV</td>
<td>23</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>AV</td>
<td>24</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>AV</td>
<td>25</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>AV</td>
<td>26</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>AV</td>
<td>27</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>AV</td>
<td>28</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>AV</td>
<td>29</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>AV</td>
<td>30</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>AV</td>
<td>31</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>AV</td>
<td>32</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>AV</td>
<td>33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>AV</td>
<td>34</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 14: BACnet® MS/TP Parameter Analog Values
Binary Inputs

<table>
<thead>
<tr>
<th>BACnet® Point Type</th>
<th>Number</th>
<th>BACnet® Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td>1</td>
<td>Run/Stop Input Command</td>
<td>Status</td>
</tr>
<tr>
<td>BI</td>
<td>2</td>
<td>Proof of Water Flow</td>
<td>Status</td>
</tr>
<tr>
<td>BI</td>
<td>3</td>
<td>Emergency Shutdown</td>
<td>Status</td>
</tr>
<tr>
<td>BI</td>
<td>4</td>
<td>Phase Loss</td>
<td>Status</td>
</tr>
<tr>
<td>BI</td>
<td>5</td>
<td>WSE Fan Run Status</td>
<td>Status</td>
</tr>
<tr>
<td>BI</td>
<td>6</td>
<td>WSE at Maximum Capacity</td>
<td>Status</td>
</tr>
<tr>
<td>BI</td>
<td>7</td>
<td>WSE Enable Status</td>
<td>Status</td>
</tr>
<tr>
<td>BI</td>
<td>8</td>
<td>WSE Alarm Not Operating</td>
<td>Alarm</td>
</tr>
<tr>
<td>BI</td>
<td>9</td>
<td>WSE Alarm Freeze Protection</td>
<td>Alarm</td>
</tr>
<tr>
<td>BI</td>
<td>10</td>
<td>WSE Alarm Primary Outlet Sensor</td>
<td>Alarm</td>
</tr>
<tr>
<td>BI</td>
<td>11</td>
<td>WSE Alarm Primary Feed Sensor</td>
<td>Alarm</td>
</tr>
<tr>
<td>BI</td>
<td>12</td>
<td>WSE Alarm Heat Exchange Inlet</td>
<td>Alarm</td>
</tr>
<tr>
<td>BI</td>
<td>13</td>
<td>WSE Alarm Heat Exchange Outlet</td>
<td>Alarm</td>
</tr>
<tr>
<td>BI</td>
<td>14</td>
<td>WSE Alarm VFD Fault</td>
<td>Alarm</td>
</tr>
<tr>
<td>BI</td>
<td>15</td>
<td>Primary A Pump 1 Status</td>
<td>Status</td>
</tr>
<tr>
<td>BI</td>
<td>16</td>
<td>Primary A Pump 2 Status</td>
<td>Status</td>
</tr>
<tr>
<td>BI</td>
<td>17</td>
<td>Pump Water Flow Status</td>
<td>Status</td>
</tr>
<tr>
<td>BI</td>
<td>18</td>
<td>For Future Use</td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>19</td>
<td>For Future Use</td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>20</td>
<td>A-Fault Low Suction</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>21</td>
<td>A-Fault Unsafe Suction</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>22</td>
<td>A-Fault Trip High Discharge Pr.</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>23</td>
<td>A-Fault Compressor A1 Not Running</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>24</td>
<td>A-Fault Compressor A2 Not Running</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>25</td>
<td>A-Fault No Suction Line Temp Sensor</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>26</td>
<td>A-Fault Low Superheat</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>27</td>
<td>A-Fault High Discharge Temp</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>28</td>
<td>A-Fault Compressor A1 False Active</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>29</td>
<td>A-Fault Compressor A2 False Active</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>30</td>
<td>A-Fault No Suction Pr. Sensor</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>31</td>
<td>A-Fault Emergency Shutdown</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>32</td>
<td>A-Fault MODBUS Slave Timeout</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>33</td>
<td>A-Fault High Superheat</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>34</td>
<td>A-Fault High Saturation Temp</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>35</td>
<td>A-Fault Compressor A1 Over Current</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>36</td>
<td>A-Fault Compressor A2 Over Current</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>37</td>
<td>A-Fault Compressor A1 Under Current</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>38</td>
<td>A-Fault Compressor A2 Under Current</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>39</td>
<td>For Future Use</td>
<td></td>
</tr>
</tbody>
</table>

Table 15: BACnet® MS/TP Parameter Binary Inputs
BINARY INPUTS

<table>
<thead>
<tr>
<th>BACnet® Point Type</th>
<th>Number</th>
<th>BACnet® Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td>40</td>
<td>A-Warning Low Suction Pressure</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>41</td>
<td>A-Warning Low Suction Pr. Startup</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>42</td>
<td>A-Warning High Discharge Pressure 1</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>43</td>
<td>A-Warning No Discharge Pr. Sensor</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>44</td>
<td>A-Warning No Discharge Temp Sensor</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>45</td>
<td>A-Warning High Superheat</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>46</td>
<td>A-Warning Condenser Fault</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>47</td>
<td>A-Warning Condenser Over Current</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>48</td>
<td>A-Warning No Liquid Line Pr. Sensor</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>49</td>
<td>A-Warning No Liquid Line Temp Sensor</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>50</td>
<td>A-Warning High Discharge Pressure 2</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>51</td>
<td>A-Lockout Suction Pressure</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>52</td>
<td>A-Lockout Low Discharge Pressure</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>53</td>
<td>A-Lockout Compressor A1 Over Current</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>54</td>
<td>A-Lockout Compressor A2 Over Current</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>55</td>
<td>A-Lockout High Discharge Temp</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>56</td>
<td>A-Lockout High Discharge Pressure</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>57</td>
<td>A-Lockout Low Superheat</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>58</td>
<td>A-Lockout High Superheat</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>59</td>
<td>A-Lockout High Saturation Temp</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>60</td>
<td>A-Lockout Compressor A1 Under Current</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>61</td>
<td>A-Lockout Compressor A2 Under Current</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>62</td>
<td>For Future Use</td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>63</td>
<td>For Future Use</td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>64</td>
<td>For Future Use</td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>65</td>
<td>For Future Use</td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>66</td>
<td>For Future Use</td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>67</td>
<td>For Future Use</td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>68</td>
<td>For Future Use</td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>69</td>
<td>For Future Use</td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>70</td>
<td>B-Fault Low Suction</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>71</td>
<td>B-Fault Unsafe Suction</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>72</td>
<td>B-Fault Trip High Discharge Pr.</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>73</td>
<td>B-Fault Compressor B1 Not Running</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>74</td>
<td>B-Fault Compressor B2 Not Running</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>75</td>
<td>B-Fault No Suction Line Temp Sensor</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>76</td>
<td>B-Fault Low Superheat</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>77</td>
<td>B-Fault High Discharge Temp</td>
<td>Fault</td>
</tr>
</tbody>
</table>

Table 15, continued: BACnet® MS/TP Parameter Binary Inputs
BINARY INPUTS

<table>
<thead>
<tr>
<th>BACnet® Point Type</th>
<th>Number</th>
<th>BACnet® Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td>78</td>
<td>B-Fault Compressor B1 False Active</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>79</td>
<td>B-Fault Compressor B2 False Active</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>80</td>
<td>B-Fault No Suction Pr. Sensor</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>81</td>
<td>B-Fault Emergency Shutdown</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>82</td>
<td>B-Fault MODBUS Slave Timeout</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>83</td>
<td>B-Fault High Superheat</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>84</td>
<td>B-Fault High Saturation Temperature</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>85</td>
<td>B-Fault Compressor B1 Over Current</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>86</td>
<td>B-Fault Compressor B2 Over Current</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>87</td>
<td>B-Fault Compressor B1 Under Current</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>88</td>
<td>B-Fault Compressor B2 Under Current</td>
<td>Fault</td>
</tr>
<tr>
<td>BI</td>
<td>89</td>
<td>For Future Use</td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>90</td>
<td>B-Warning Low Suction Pressure</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>91</td>
<td>B-Warning Low Suction Pr. Startup</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>92</td>
<td>B-Warning High Discharge Pressure 1</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>93</td>
<td>B-Warning No Discharge Pr. Sensor</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>94</td>
<td>B-Warning No Discharge Temp Sensor</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>95</td>
<td>B-Warning High Superheat</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>96</td>
<td>B-Warning Condenser Fault</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>97</td>
<td>B-Warning Condenser Over Current</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>98</td>
<td>B-Warning No Liquid Line Pr. Sensor</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>99</td>
<td>B-Warning No Liquid Line Temp Sensor</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>100</td>
<td>B-Warning High Discharge Pressure 2</td>
<td>Warning</td>
</tr>
<tr>
<td>BI</td>
<td>101</td>
<td>B-Lockout Suction Pressure</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>102</td>
<td>B-Lockout Low Discharge Pressure</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>103</td>
<td>B-Lockout Compressor B1 Over Current</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>104</td>
<td>B-Lockout Compressor B2 Over Current</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>105</td>
<td>B-Lockout High Discharge Temp</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>106</td>
<td>B-Lockout High Discharge Pressure</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>107</td>
<td>B-Lockout Low Superheat</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>108</td>
<td>B-Lockout High Superheat</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>109</td>
<td>B-Lockout High Saturation Temp</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>110</td>
<td>B-Lockout Compressor B1 Under Current</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>111</td>
<td>B-Lockout Compressor B2 Under Current</td>
<td>Lockout</td>
</tr>
<tr>
<td>BI</td>
<td>112</td>
<td>Chiller Fully Loaded</td>
<td>Status</td>
</tr>
</tbody>
</table>

Table 15, continued: BACnet® MS/TP Parameter Binary Inputs
BACnet® Multi-State Input

<table>
<thead>
<tr>
<th>BACnet® Point #</th>
<th>BACnet® Point Name</th>
<th>BACnet® Description</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI: 1</td>
<td>Operating Status</td>
<td>Current Unit Mode</td>
<td>1 = OFF_MODE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 = RUN MODE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 = Holiday OFF MODE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 = Holiday RUN MODE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 = Startup Delay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 = Emergency Shutdown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 = High Leaving Water</td>
</tr>
</tbody>
</table>

Table 16: BACnet® MS/TP Parameter Multi-State Input
Prism 2 Software: Version 4.9.0 and later
LF Chiller Main Controller Code: Version 1.0 and up
Prism 2 Requirements

PLEASE NOTE
This appendix gives a brief overview of the Prism 2 software. For more information, refer to the Prism 2 Technical Guide, the CommLink 5 Technical Guide, the IP Module Technical Guide, the USB-Link 2 Technical Guide, and/or the MiniLink PD 5 Technical Guide. All can be found on the AAON website at www.aaon.com/controlsmanuals.

Prism 2 is a complete Windows®-based graphical interface controls and management program that allows you to interact with your digital controls. The program provides standard, easy-to-understand status, setpoint, and configuration screens for the LF Chiller Main Controller and other controllers in your system.

Prism 2 allows you to access trend logs and alarm conditions. The program can be configured for direct on-site installation or TCP/IP Internet connection.

Feature Summary
Prism 2 provides a broad set of features:

- Easy to use
- On-site or TCP/IP communications
- User programmable description for every piece of equipment and user-defined custom screens
- Automatic retrieval of trend logs and export capability to spreadsheet and database programs
- Alarm Logs maintained on disk
- Alarm E-mail/texting capability when using a CommLink
- Encrypted History Logs

System Requirements
To use Prism 2 you must have a computer that meets or exceeds the following requirements:

Operating System
- Microsoft® Windows® 10

NOTE: Prism 2 is not intended for a server/client environment nor for any version of Windows Server.

Minimum Hardware
- Windows® compatible computer
- CommLink 5 or USB Link 2 for direct, on-site connection
- IP Module for remote connection
- Prism is NOT supported in a server environment. It does not support client/server systems. Prism is a LAPTOP/DESKTOP ONLY system.

WARNING: Older operating systems, while they still might be capable of running Prism, are not recommended due to security updates being obsoleted by Microsoft®. We also do not support troubleshooting of any version of Windows® operating the Prism program. Some new models of laptops running the latest release of Windows® 10 have also experienced issues running Prism, and we cannot troubleshoot customer computer issues.

Software License
Prism 2 does not require any license agreement and may be freely copied and distributed.

Support Information
AAON Controls provides Prism 2 installation and configuration support. Call (866) 918-1100 for free, direct telephone support or (816) 505-1100 to talk to a Controls Support Representative. Support for all telephone services is available Monday through Friday, 7:00 AM to 5:00 PM central standard time.

NOTE: AAON Controls Support cannot troubleshoot internal PC and/or Windows®-based operating system problems.

NOTE: AAON Controls Support cannot troubleshoot firewalls, routers, and/or problems on a customer's internal or external network. An IT professional may need to be consulted.
Prism 2 Technical Guide Overview

The Prism 2 Technical Guide will lead you through each step in configuring Prism 2—from entering passcodes to searching and selecting units for troubleshooting. Below is a quick overview of each step of the guide that pertains to the LF Chiller Control System.

Step 1: Installing Prism 2—This section explains how to install the Prism 2 software, initiate communications, navigate the program, and enter and edit passcodes.

Step 2: Setting Up Job Sites—This section provides instructions for setting up each job site’s name, port, or IP address, CommLink type and configuration, alarm notification, and custom screen designation.

Step 3: Configuring Prism 2—This section describes how to have Prism 2 automatically restart after a power failure and broadcast time to all controllers. It also explains how to set up the main screen display picture.

Step 4: Setting Up Communications—This section explains how to establish communications via TCP/IP connection through your CommLink.

Step 5: Searching for Installed Units—This section explains how to perform a unit search per job-site.

Step 6: Selecting and Renaming Loops and Units—This section explains how to select and rename loops and units.

Step 7: Configuring Units—This section describes how to configure controller setpoints. It also explains how to configure units while off-line.

Appendices—The appendices include examples of status and setpoint screens, instructions for DEMOMODE, and a list of controllers, E-BUS modules, and other devices that can be updated using Prism 2.
Controller Status Screen

After successful Prism 2 installation and job-site setup, you will be able to access the LF Chiller Controller Status Screen. See Figure 14 below.

Besides displaying the current operating status and inputs and outputs, from this screen you can set schedules, force modes, run BACnet® commands, view alarms, print status reports, chart modules, and access and change setpoints and configurations.

NOTE: Only the Administrator and top level users can access and change setpoints and schedules.
Controller Setpoint Screens

Setpoints are accessed by clicking on "Setpoints" at the top left of the LF Chiller Main Controller Status Screen (Figure 14, page 68). The Temperature Setpoints Screen will display. See Figure 15, below.

At the bottom of any Setpoints Screen, you can access all other Setpoint Screens by clicking the icons, Temperatures, Staging Delays, Miscellaneous, Calibration, Configuration, RSM Module, WSE Module, and Pump Module.

The figures that follow show the rest of the screens available under Setpoints.

![Temperatures Setpoints Screen]

Figure 15: Temperatures Setpoints Screen
APPENDIX E - PRISM 2 INTERFACE

Controller Setpoint Screens

Staging Delays & Timing Intervals

<table>
<thead>
<tr>
<th>Time</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Min</td>
<td>Compressor Staging Up Delay</td>
</tr>
<tr>
<td>1 Min</td>
<td>Compressor Staging Down Delay</td>
</tr>
<tr>
<td>5 Min</td>
<td>Compressor Minimum Run Time</td>
</tr>
<tr>
<td>3 Min</td>
<td>Compressor Minimum Off Time</td>
</tr>
<tr>
<td>60 Sec</td>
<td>Bad Water Out Temp Failure Delay</td>
</tr>
<tr>
<td>30 Sec</td>
<td>Coil Setpoint Reset Rate</td>
</tr>
<tr>
<td>30 Sec</td>
<td>Compressor Modulation Rate</td>
</tr>
<tr>
<td>60 Sec</td>
<td>Leaving Water Setpoint Reset Rate</td>
</tr>
</tbody>
</table>

Configuration

- 2 Number of Refrigeration Modules
- 4 Number of Compressors
- Has Waterside Economizer
- Has Building Pump Module

Figure 19: Configuration Setpoints Screen

Water Side Economizer Module

- 55.0° Waterside Economizer Enable Offset
- 50.0° Primary Outlet Setpoint
- 40.0° Heat Exchanger Outlet Setpoint
- 35.0° Freeze Protection Setpoint
- 32.0° Heat Exchanger Inlet Setpoint
- 0 Sec Fan Staging Delay
- 0 Sec WSE Startup Delay
- 30% Minimum VFD Speed
- 95% Minimum Mixing Valve Position with Fan On
- 30 Min Primary 3-Way Valve Slow Start
- 1 Min Primary 3-Way Valve Slow Stop
- WSE Isolated (Default is Non-Isolated)
- Primary Water Valve is Reverse Acting

Figure 20: WSE Module Setpoints Screen

Miscellaneous

<table>
<thead>
<tr>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Figure 17: Miscellaneous Setpoints Screen

Sensor Calibration

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0°</td>
<td>Chilled Water In Calibration Offset</td>
</tr>
<tr>
<td>0.0°</td>
<td>Chilled Water Out Calibration Offset</td>
</tr>
<tr>
<td>0.0°</td>
<td>Outdoor Air Calibration Offset</td>
</tr>
</tbody>
</table>

Figure 18: Calibration Setpoints Screen
Refrigeration Modules

COMPRESSOR CONFIGURATIONS

<table>
<thead>
<tr>
<th>Module A</th>
<th>Comp #1 Modulating</th>
<th>Comp #2 On/Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module B</td>
<td>Comp #1 On/Off</td>
<td>Comp #2 On/Off</td>
</tr>
</tbody>
</table>

CURRENT RATING

- **315 PSI**: Head Pressure Setpoint
- **50%**: Minimum Compressor Speed

<table>
<thead>
<tr>
<th>A1</th>
<th>0.0 Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>0.0 Amps</td>
</tr>
<tr>
<td>B1</td>
<td>0.0 Amps</td>
</tr>
<tr>
<td>B2</td>
<td>0.0 Amps</td>
</tr>
</tbody>
</table>

Condenser Configurations

- Single Fan Per Module
- One Fan Per Two Modules
- One Fan Per Three Modules
- One Fan Per Four Modules
- One Fan Per Five Modules
- One Fan Per Six Modules

Figure 21: Refrigeration Module Configuration Screen

Building Pump Module

PUMPING CONFIGURATION

- Primary Only with Fixed Speed Pumping

PUMP BACKUP CONFIGURATION

- Primary A Backup Pump
- Secondary Backup Pump
- Primary B Backup Pump

MISCELLANEOUS CONFIGURATIONS

- Primary Valve is Reverse Acting
- Secondary Valve is Reverse Acting
- Enable Pump Lead/Lag Operation

PUMPING IN FREEZE PROTECTION

- Pumping in Freeze Protection Disabled
- Pumping in Freeze Protection Enabled

<table>
<thead>
<tr>
<th>100 PSI</th>
<th>Maximum Building Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 PSI</td>
<td>Building Differential Pressure Target</td>
</tr>
<tr>
<td>1 PSI</td>
<td>Minimum Suction Pressure</td>
</tr>
</tbody>
</table>

Figure 22: Pumping Module Setpoints Screen
Changing, Saving & Restoring Setpoints, Printing & Charting

Setpoint Help & Changing Setpoints

If you position the cursor over the top of a setpoint box, a Help Window will pop up indicating how that setpoint is used by the controller.

If you enter a setpoint that is either too high or too low or if you don’t have Level 3 access, Prism 2 will not accept the new value and will restore the previous value in that field. When you enter a value, you must press <Enter> to have Prism 2 save the value.

Saving and Restoring Setpoints

At the top of each setpoint screen, you can select <Save> or <Restore>. These two functions save and copy over ALL of the setpoints for a controller, not only those on a single setpoint screen.

Saving all setpoints from the controller to a file on your computer for use in restoring the setpoints or for copying to another specific controller will save time in configuring your controller and save valuable time in having to reenter setpoints for another controller.

Restore Factory Defaults

To restore factory configuration and setpoint defaults for the DX Chiller Controller, select <Restore Factory Defaults> at the top of any setpoint screen.

WARNING: AAON does not assume any responsibility or liability due to misuse or misunderstanding of this feature. Restore Factory Defaults wipes out ALL current configuration and setpoints for a single controller.

The following message will display:

Select <Yes> to clear all configuration and settings and restore factory defaults. Select <No> to cancel this operation.

Printing & Charting

At the top of the LF Chiller Main Controller Status Screen (Figure 14, page 68), are the options <Print> and <Charting>.

Select <Print> to print a status report for the Controller for the current date. See Figure 23, below for an example. The printers you have set up for your computer will show in the printer selection box at the bottom of the screen.

Select <Charting> to display a chart for the Main Chiller Controller or the Refrigeration Modules. See Figure 24, below for an example. You have the option to clear the graph, chart the colors, or save the graph.
LF Chiller Refrigeration Timers

At the top of the LF Chiller Main Controller Status Screen (Figure 14, page 68), click <Staging Timers>. The LF Chiller Refrigeration Timers Window will display. See Figure 25, below.

![Figure 25: Refrigeration Timers](image)

Schedules & Holidays

When you select the <Schedules> icon found on the LF Controller Status Screen (Figure 14, page 68), the Schedules Screen will appear. See Figure 26, below.

![Figure 26: Schedules Screen](image)

The Controller has two event start and stop times per day and two event start and stop times for holidays. The holiday start and stop times will override the standard operating hours.

When you enter a time in any field, you must designate AM or PM and press <ENTER>.

To schedule holidays, press the <Holidays> button. The Holiday Schedule Screen will appear. See Figure 27.

Figure 27: Yearly Holiday Schedules Screen

Click on the date to highlight it and tag it as a holiday. Days selected as holidays are indicated with a green background and white text.

There are 14 holiday periods available for each year. These holiday periods can span a single day or they can span weeks or even months.

If your job-site has days during the year when you need to override the standard operating hours to accommodate holidays or other special events, you can use this window to select the holidays.

You cannot program holidays for the next year, and holidays do not automatically adjust for the new year, so you will need to access this screen after the new year and make necessary adjustments to the days that float, such as Memorial Day.

Saving and Restoring Schedules & Holidays

While at the Schedules Screen (Figure 26), select <Save> to save your schedule. Select <Restore> to restore a previously saved schedule. Select <Erase Schedules> to completely erase the schedule appearing in the window.

WARNING: <Erase Schedules> will clear ALL entered stop/start times, so use with caution.

While at the Holiday Schedule Screen (Figure 27), select <Save> to save the Holidays. Select <Restore> to restore previously saved Holidays. Select <Erase> to completely erase the holidays appearing in the window.

Saving all schedules from the controller to a file on your computer for use in restoring the schedules or for copying to another specific controller will save time in configuring your controller and save valuable time in having to reenter schedules for another controller.
Schedule Override & Alarms

Schedule Override

You can override the schedule mode of operations by clicking on the button under Chiller Mode of Operation. The Overides Dialog Box will appear. See Figure 28.

You can choose Auto Scheduling, Force Schedule ON or Force Schedule OFF.

A scheduled force override will remain in effect until cancelled. To cancel an override, select the Auto Scheduling option.

Viewing Alarm Status

The Unit Alarm Screen is accessed from the controller’s status screen by clicking the <ALARM> button. This button will be a dull red and display <No Alarms> when there are no alarms present or will be bright red and display <ALARM> if active alarms exist.

Click the <ALARM> button when bright red or the <No Alarms> button when dull red. The Chiller Alarm Status Screen will appear. See Figure 29.

Each individual <ALARM> button will be bright red if an alarm exists and will be gray if no alarm exists.

Click the blue <Manual Lockout Reset> button to immediately reset an alarm once it has cleared.

Figure 28: Overides

Figure 29: Unit Alarm Status Screen
Optional Computer Connection Diagram Using CommLink 5

Figure 30: CommLink 5 Connection
APPENDIX E - PRISM 2 INTERFACE

IP Module Connection

Figure 31: IP Module Connection
USB-Link 2 Connection

Connect The USB-Link 2 Mini-DIN Cable To The Female Mini-DIN Plug Connector On Controllers That Are Supplied With Them. NOTE: This Allows Communications With All Controllers That Are Connected To The System When Network Communication is Chosen.

NOTE:
1. In Order To View A Single Controller Using Prism 2, You Must Disconnect The Communication Loop From The Controller. Your USB-Link Is Plugged Into, Set The USB-Link Configuration Switch To Stand Alone, Set The Type Of CommLink In Prism 2 To USB Link Stand Alone, And Cycle Power By Disconnecting And Reconnecting the USB Power Supply Cable.

Figure 32: USB-Link 2 Connection
AAON Factory Technical Support: 918-382-6450
technical.com

AAON Controls Support: 866-918-1100
Monday through Friday, 7:00 AM to 5:00 PM central standard time

NOTE: Before calling Technical Support, please have the model and serial number of the unit available.

PARTS: For replacement parts please contact your local AAON Representative.