MHGRV-X Controller
Field Technical Guide
TABLE OF CONTENTS

CONTROLLER OVERVIEW ... 3
Features.. 3

INSTALLATION & WIRING ... 4
Important Wiring Considerations .. 4
MHGRV-X Controller to AAON Unit Controller Wiring ... 5
MHGRV-X Stand Alone Wiring ... 6

INPUTS AND OUTPUTS .. 7

OPERATION OVERVIEW .. 8
Initialization ... 8
Modulating Hot Gas Valves ... 8
Modes of Operation .. 8
Additional Features .. 9

LCD DISPLAY SCREENS ... 10

TROUBLESHOOTING .. 14
Using LEDs to Verify Operation .. 14
Temperature Sensor Testing ... 15

APPENDIX A - Supply Air Temperature Sensor Guide ... 18
Supply Air Temperature Sensor Installation ... 18
Supply Air Temperature Sensor Wiring Chart and Jumper Settings .. 19

APPENDIX B .. 20
MHGRV-X Replacement of MHGRV II .. 20

APPENDIX C .. 21
Reheat Expansion Module .. 21

PART NUMBER TABLE

<table>
<thead>
<tr>
<th>PART DESCRIPTION</th>
<th>AAON TULSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHGRV-X Controller</td>
<td>V12100</td>
</tr>
<tr>
<td>Reheat Expansion Module</td>
<td>V42450</td>
</tr>
<tr>
<td>MODGAS-X Controller</td>
<td>V12090</td>
</tr>
<tr>
<td>Supply Air Temperature Sensor</td>
<td>P87140</td>
</tr>
<tr>
<td>EBC E-BUS Cables - Varying Lengths</td>
<td>N/A</td>
</tr>
</tbody>
</table>

www.aaon.com

AAON Controls Inc.
8500 NW River Park Drive · Parkville, MO 64152
Toll Free Phone: 866-918-1100
Ph: (816) 505-1100 · FAX: (816) 505-1101
E-mail: mail@wattmaster.com
Visit our web site at www.orioncontrols.com

Copyright June 2018 AAON Controls, Inc.
AAON® Manual Part No.: V16950, Rev. 01M
AAON® is a registered trademark of AAON, Inc., Tulsa, OK.
AAON Controls assumes no responsibility for errors or
omissions in this document.
This document is subject to change without notice.
Overview

The V12100 MHGRV-X Controller is designed to control a Modulating Hot Gas Reheat Valve to maintain a desired Supply Air Temperature setpoint. The controller can be used as a stand-alone controller or can be used in conjunction with any AAON unit controller.

In addition, up to (7) Reheat Expansion Modules can be connected to the Controller and to each other for additional Reheat Valve Control.

The MHGRV-X controller connects to an AAON unit controller or expansion module via a modular cable. Depending on the type of unit controller, this connection will utilize an I²C connection or an E-BUS connection.

When using the MHGRV-X Controller to replace an existing MHGRV II Controller, see Appendix B, page 20 for details.

See Figure 1 for dimensions (in inches).

Features

The MHGRV-X provides the following:

- Can be operated as a stand-alone controller or communicating with AAON unit controllers.
- Provides for Supply Air Temperature Setpoint reset when required
- Second stage reheat capability when using 2 Hot Gas Reheat Valves
- Control of reheat solenoid valve to provide coil flushing for positive refrigerant oil return
- Can provide further Reheat control using up to (7) Reheat Expansion Modules
- Contains a 2 x 8 LCD character display and 4 buttons that allow for status display, setpoint changes, and configuration changes
Installation & Wiring

Installation & Mounting

The MHGRV-X Controller is housed in a plastic enclosure. It is designed to be mounted by using the 3 mounting holes in the enclosure base. It is important to mount the module in a location that is free from extreme high or low temperatures, moisture, dust, and dirt. Be careful not to damage the electronic components when mounting the module.

NOTE: The MHGRV-X Controller contains no user-serviceable parts. Contact qualified technical personnel if your Controller or Module is not operating correctly.

General Wiring Information

Depending on if the MHGRV-X Controller is to be connected to the HVAC controller or is to be used as a stand-alone controller determines how the MHGRV-X should be wired. For the wiring diagram to use when the MHGRV-X Controller is connected to an AAON Unit Controller, see Figure 2, page 5. For the stand-alone wiring diagram, see Figure 3, page 6.

For Reheat Expansion Module wiring, see Figure 9, page 23.

Please carefully read and apply the following information when wiring the MHGRV-X controller and its expansion board(s):

1. 18 gauge minimum wire unless otherwise noted.
2. 24 VAC power connection with an appropriate VA rating.
3. Supply Air Temperature Sensor and Heat Enable must have 24 gauge minimum wire.
4. All 24 VAC wiring must be connected so that all ground wires remain common. Failure to follow this procedure can result in damage to the module and connected devices.
5. All wiring is to be in accordance with local and national electrical codes and specifications.
6. Check all wiring leads at the terminal block for tightness. Be sure that wire strands do not stick out and touch adjacent terminals. Confirm that all transducers required for your system are mounted in the appropriate location and wired into the correct terminals.
Communications Wiring

For connection to a VCCX2 or VCB-X Controller, VCCX2 or VCB-X Expansion Module, and Reheat Expansion Module, use an E-BUS Cable to connect to the appropriate E-BUS port on those modules and/or controller.

For all other controllers, including the VAV/CAV, MUA, VCM, VCM-X, SA, and RNE Controllers, use an I2C Cable connecting to the appropriate I2C ports on those controllers.

When connected to an AAON Unit Controller, the Supply Air Temperature Sensor is attached to the Main Controller. See Figure 2 below.

See the SAT Wiring Conditions Table and SAT OPTIONS jumper settings in Tables 7 & 9, page 19.
Stand-Alone Wiring

In Stand-Alone mode, the MHGRV-X connects to the E-BUS port of the Reheat Expansion Module with an EBC E-BUS cable. See Figure 3 below.

See the SAT Wiring Conditions Table and SAT OPTIONS jumper settings in Tables 7 & 8, page 19.
I/O Map

The following inputs and outputs are available on the MHGRV-X Controller. See Table 1 below to reference the Input/Output Map.

ANALOG INPUTS

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Supply Temperature</td>
</tr>
<tr>
<td>2</td>
<td>Reset Signal</td>
</tr>
<tr>
<td>3</td>
<td>AUX Input</td>
</tr>
</tbody>
</table>

BINARY INPUTS

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reheat Enable</td>
</tr>
<tr>
<td>2</td>
<td>Heating Override</td>
</tr>
<tr>
<td>3</td>
<td>Cooling Override</td>
</tr>
</tbody>
</table>

RELAYS

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fan</td>
</tr>
<tr>
<td>2</td>
<td>Compressor</td>
</tr>
<tr>
<td>3</td>
<td>Reheat Valve / Compressor 2</td>
</tr>
<tr>
<td>4</td>
<td>Auxiliary / Reversing Valve</td>
</tr>
</tbody>
</table>

Table 1: MHGRV-X Controller Inputs & Outputs

NOTE: All analog and 24 VAC contact closure inputs are used only in Stand Alone operation.

Binary Inputs

REHEAT EN: Reheat Enable Contact

Used only in stand-alone operation. When a call for dehumidification is initiated by another controller, this interlocked 24 VAC wet contact closure is used to enable the MHGRV-X controller.

HEAT OVR: Heating Override

Used only in stand-alone operation. When a call for heating is initiated by the HVAC unit, this interlocked 24 VAC wet contact closure is used to override the MHGRV-X controller dehumidification mode.

COOL OVR: Cooling Override

Used only in stand-alone operation. When a call for cooling is initiated by the HVAC unit, this interlocked 24 VAC wet contact closure is used to override the MHGRV-X controller dehumidification mode.

Relay Outputs

FAN: Fan Enable

When a call for Dehumidification, Cooling Override, or Heating Override is received, this relay will be closed to energize the HVAC unit Supply Fan.

CMP: Compressor Enable

When a call for Dehumidification or Cooling Override is received, this relay will be closed to energize the Compressor(s).

VALVE: Reheat Solenoid Valve / Compressor 2

If configured as standard, this relay will be used to control a Reheat Solenoid Valve. When a call for Dehumidification is active for 30 seconds, this relay will be closed to energize the Hot Gas Solenoid Valve.

If configured as Compressor 2, this relay will be used to control a second Compressor when there is a call for Dehumidification. Compressor 2 will come on 30 seconds after the first Compressor activates. Compressor 2 has a minimum run time of 10 minutes, and will turn off if the Reheat Valve is at 100% and the Supply Air Temperature is 5°F below setpoint for 1 minute. After being off for 10 minutes, it can come back on if the Supply Air Temperature is 5°F above setpoint and the valve is at 0%.

AUX: 2 Position HGR Valve / Reversing Valve

If configured as standard, this relay will be used to control a 2 Position HGR Valve. Used on larger capacity systems that have an optional 2 Position HGR Valve in addition to the Modulating HGR Valve. When a call for Dehumidification is received, if the modulating HGR valve is at 100% and the Supply Air Temperature is at least 5°F below setpoint, this relay output will energize to enable the 2 Position HGR Valve. The relay will de-energize when the modulating HGR valve closes to 0% and the Supply Air Temperature is at least 5°F above setpoint. The modulating valve is then enabled to modulate to maintain the Supply Air Temperature Setpoint.

If configured as Reversing Valve, this relay will control a Reversing Valve on a Heat Pump unit. Any time there is a call for Cooling or Dehumidification, this relay will be energized.

COM: Relay Common

Requires 24 VAC from transformer.

Analog Inputs

SAT: Supply Air Temperature Sensor

Used in stand-alone operation and when MODGAS is connected to a CAV/NAV or MUA Controller. The Supply Air Temperature Sensor is the main control input. This sensor has to be installed for the unit to operate. The Supply Air Temperature Sensor is located in the discharge air stream and monitors the HVAC unit’s Supply Air Temperature to maintain the Supply Air Temperature Setpoint.

RST IN: Reset Signal

Used only in stand-alone operation. The Discharge Temperature Setpoint can be reset by supplying a 0-10 VDC signal to the RESET IN low voltage terminal block. This reset signal is optional and need only be used if you require resetting of the discharge air temperature.

AUX IN: Auxiliary Reheat Valve Input

Used when AUX mode is configured as enabled. This input looks at a 0-10 VDC signal to control the valve position. 0VDC = 0% Reheat Valve position, 5VDC = 50% Reheat Valve position, 10VDC = 100% Reheat Valve position.
Operation Modes

Initialization

The MHGRV-X Controller uses on-board LEDs to indicate various diagnostic conditions during power-up and operation. It also uses the LCD Display to show initialization. Please review this information for a complete description of the controller initialization sequence.

Modulating Hot Gas Valves

The MHGRV-X Controller utilizes two modulating valves to control the flow of Hot Gas through the Hot Gas Reheat Coil. One of these valves is the Condenser Hot Gas Valve and the other is the Reheat Hot Gas Valve. The valves are wired to the MHGRV-X Controller Modulating Hot Gas Valve Output terminals on the controller. These valves work in concert with each other to create a “three-way valve” configuration. As one closes, the other opens, etc. All modes of operation that follow referring to the Hot Gas Reheat Valve are actually a combination of these two valves working together to achieve the specified sequence of operation. **NOTE:** Some units use a three way valve instead of two separate valves. The three way valve is wired to the Reheat terminal block.

Modes of Operation

The MHGRV-X Controller can be used in two different modes of operation. These modes behave in a similar manner; the main difference is the way they receive information to control the dehumidification process. The following is a description of these modes:

Stand-Alone Operation

As the name implies, in this mode the controller behaves as an independent unit. The controller begins the dehumidification process when the Dehumidification Input “H1” receives a 24 VAC signal from an outside source. When the signal is received, the controller will activate the “FAN” output to energize the HVAC unit fan. At the same time, the controller will initiate Cooling Mode by energizing the “CMF” output starting the HVAC unit compressor. In addition, the controller will open the Hot Gas Reheat Coil by activating the “VALE” output. At this time, the MHGRV-X Controller will start to modulate the Modulating Hot Gas Reheat valve. The controller will modulate the MHGR valve to maintain the Supply Air Temperature Setpoint by activating the stepper motor outputs on the MHGR valve. The Supply Air Setpoint is configured with the Setpoint Screen in the LCD Display. If Supply Air Temperature Reset is used, it will initiate when a 0-10 VDC signal is supplied to the “RESET IN” input. As the voltage increases from 0 to 10 Volts at the “RESET IN” input, the Supply Air Temperature will be reset towards the Supply Air Reset Temperature Setpoint. This setpoint is configured with the Setpoint Screen in the LCD Display. When a 10 Volt input signal is received at the “RESET IN” input, it will be controlling at the Supply Air Temperature Reset Setpoint. The controller will conclude the Dehumidification process when input “H1” is deactivated, the input “Cool Override” is activated, or the input “Heat Override” is activated.

Auxiliary Mode Stand-Alone

1. Auxiliary Mode Operation needs to be configured first from the display.
2. This mode will be activated if the Reheat Enable input is enabled. Any expansion boards that are enabled will follow.
3. Reheat Valve
 - The unit will keep the valve off for the first 30 seconds
 - Then it will modulate the valve between 0% to 100% to match the 0-10 VDC Auxiliary Analog input.
4. The Unit will exit Reheat Mode when the Reheat input is disabled. The expansion modules will do the same.
5. Relay Operation
 - Fan Relay will be activated in this mode.
 - Compressor Relay will be activated in this mode.
 - Valve Relay will be activated in this mode after the initial 30 seconds.
 - Auxiliary relay
 - It will be activated if the Reheat Valve stays at 100% for 2 minutes and the Supply Air Temperature is 5°F below the Supply Air Setpoint.
 - It will deactivate if the Reheat Valve stays at 0% for 2 minutes and the Supply Air Temperature is 5°F above the Supply Air Setpoint.
Communicating Operation

In this mode, the MHGRV-X Controller behaves as an expansion board for an AAON Unit controller. The controller begins the dehumidification process when the AAON Unit controller makes a request to the MHGRV-X Controller for dehumidification. At that time, the controller will activate the “FAN” output to energize the HVAC unit fan. At the same time, the controller will initiate Cooling Mode by energizing the “CMP” output starting the HVAC unit compressor. In addition, the controller will open the Hot Gas Reheat Coil by activating the “VALVE” output which opens the Reheat Solenoid Valve. At this time, the MHGRV-X Controller will start to modulate the Modulating Hot Gas Reheat valve. The controller will modulate the MHGR valve to maintain the Supply Air Temperature Setpoint by activating the stepper motor outputs on the MHGR valve. The Supply Air Setpoint is set by programming the HVAC unit controller. If Supply Air Temperature Reset is used, it will initiate when the HVAC sends a request to reset the Supply Air Temperature. The Supply Air Temperature will be reset towards the Supply Air Reset Temperature Setpoint stored in the HVAC controller. It will send a request to move towards the Supply Air Temperature Reset Setpoint based on its setpoints and configuration. The controller will conclude the Dehumidification process when the HVAC control sends a request to terminate Dehumidification or a Cooling or Heating Override request is made by the HVAC unit controller. Any setpoints or signals at the inputs to the MHGRV-X Controller will be ignored.

Auxiliary Mode Communicating

1. Same as the Stand Alone Auxiliary Mode, but the Reheat Enable and Auxiliary Valve position will be sent using E-BUS commands.

Additional Features

Reheat Coil Flush
To assure positive oil return to the compressor, the Hot Gas Reheat Coil will be flushed of liquid refrigerant by moving the Modulating Gas Reheat Valve to its maximum position for a short interval.

Cooling Flush: If the unit is in cooling mode, a flush will occur when the unit’s flush cooling interval timer has elapsed. The time is accumulated whenever it is in cooling mode and resets after each flush cycle. The flush cooling interval timer is a setpoint that is configurable using the keypad and display (0 to 120 minutes in 10 minute increments).

Reheat Mode Flush: If the unit is in dehumidification mode and the valve is below 70% for the flush reheat interval timer value, a flush will occur. If the valve goes above 70%, the timer is reset. The flush reheat interval timer is a setpoint that is configurable using the keypad and display (0 to 120 minutes in 10 minute increments).

Optional Second Stage Reheat
On larger systems, where more hot gas reheat capacity may be required, a 2 Position Hot Gas Reheat valve can be connected to the MHGRV-X Controller to be used in conjunction with the Modulating Hot Gas Reheat valve. Any time the reheat demand moves above the Modulating Hot Gas Reheat valve capacity, this 2 position valve would be energized to supply additional hot gas to the Hot Gas Reheat coil. As the reheat demand is satisfied, the MHGRV-X Controller will de-energize the 2 position valve and control reheat with the Modulating Hot Gas Reheat valve.

Reheat Solenoid Valve Control
The Hot Gas Reheat Solenoid valve for the Reheat Coil is activated when there is a call for Dehumidification. In this mode, the Hot Gas Reheat Solenoid will be deactivated 2 minutes after the reheat demand ceases. The Hot Gas Reheat Solenoid valve will be reactivated when a request for reheat is received by the MHGRV-X Controller.
LCD Display Screen & Navigation Keys

The MHGRV-X Controller allows you to make configuration changes, view status, change setpoints, create force modes, and perform diagnostics using the keypad next to the LCD display. See Figure 4 and refer to Table 2 for descriptions.

<table>
<thead>
<tr>
<th>Navigation Key</th>
<th>Key Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENU</td>
<td>Use the MENU key to navigate through the Main Menu Screens</td>
</tr>
<tr>
<td>UP</td>
<td>Use this key to adjust setpoints and change configurations. This key is also used to turn Valve Force Mode on.</td>
</tr>
<tr>
<td>DOWN</td>
<td>Use this key to adjust setpoints and change configurations. This key is also used to turn Valve Force Mode off.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Use the Enter key to move through screens within Main Menu categories. Also, use this key to save setpoints and configuration changes.</td>
</tr>
</tbody>
</table>

Figure 4: LCD Display and Navigation Keys

Table 2: Navigation Key Functions
Main Screens Map

Refer to the following map when navigating through the LCD Main Screens. The first screen is an initialization screen. To scroll through the rest of the screens, press the <MENU> button.

Press \(\checkmark \) to scroll through MHG REHEAT Screens.

Press M to go to STATUS Screens.

Press \(\checkmark \) to scroll through STATUS Screens.

Press M to go to ALARMS Screens.

Press \(\checkmark \) to scroll through ALARMS Screens.

Press M to go to SETPOINT Screens.

Press \(\checkmark \) to scroll through SETPOINT Screens.

Press M to go to FORCE VALVE Screens.

Press \(\checkmark \) to scroll through FORCE VALVES Screens.

Main MHG REHEAT Screens

Refer to the following map when navigating through the Main Screens. From the MHG REHEAT Screen, press <ENTER> to scroll through the screens.

In Stand-Alone Mode, the screen will display S/A MODE or S/A MODE LOCKED.

In Communications Mode, the screen will display COMM MODE and the items below will scroll through the screen:

1. Number of good packets being received. This will roll over after 9999. Example: +XXXX

2. Number of checksum errors. This will stop at 9999. Example: C-XXXX

3. Number of packet length errors. This will stop at 9999 until power is cycled. Example: P-XXXX
Status Screens

Refer to the following map when navigating through the Status Screens. From the STATUS Screen, press <ENTER> to scroll through the screens.

Status Screens shown below will scroll automatically if LCD display is left on this screen for 20 seconds.

MODE
OFF, REHEAT, FLUSH, AUX, FORCE!

This screen displays the current mode of operation of the MHGRV-X Controller. The mode options are:

OFF: This mode will display if the unit is not in Dehumidification Mode and there is no call for Modulating Hot Gas Reheat (MHGR).

REHEAT: During Dehumidification, the unit will enter the Reheat Mode and will begin to modulate the MHGR Valve to maintain the Supply Air Temperature Setpoint. The unit will leave the Reheat Mode when the unit leaves the Dehumidification Mode.

FLUSH: This mode will display if the unit is performing a cooling flush cycle or a reheat flush cycle (see Additional Features, page 9).

AUX: If Aux operation has been enabled, a 0-10 VDC signal can be used to proportionally modulate the MHGR Valve between 0 – 100 %.

FORCE!: The unit is in the Force Mode.

Alarm Screens

Refer to the following map when viewing Alarm Screens. These screens will display automatically when alarms are present. For more information, see pages 14 & 15.

The alarms are as follows:

NO ALARMS: This will be shown if there are no current alarms.

SAT FAIL ERROR: The Supply Air Temperature sensor has been disconnected for more than 60 seconds. This alarm will be disabled when the sensor is reconnected.

COMM T/O ERROR: Communications have been lost with the main controller. This alarm will disable when communications resume.
Setpoint Screens

Refer to the following map when navigating through the Setpoint Screens. From the SETPOINT Screen, press <ENTER> to scroll through the screens and change setpoints. Use the <UP> and <DOWN> arrow keys to change your selections. Then press <ENTER> to save the new setpoint.

WARNING: When the MHGRV-X is operating in Communications Mode (connected to the Main Controller), these setpoints screens will not appear on the LCD display because they are controlled by the Main Controller. So, to get to these Setpoints, you have to temporarily disconnect the MHGRV-X from the Main Controller.

SAT SP
40-150°F
5-65°C

RESET SP
40-150°F
5-65°C

REHEAT SUPPLY AIR TEMPERATURE SETPOINT
This is the target temperature while reheat is enabled. If you are using the reset signal, this is the setpoint it will calculate to at zero volts. Will display only in stand-alone mode. The SAT Setpoint is set by the LCD Display in stand-alone mode and is set by the Main Controller in communicating mode.

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>40°F</td>
<td>70°F</td>
<td>150°F</td>
</tr>
<tr>
<td>5°C</td>
<td>21°C</td>
<td>65°C</td>
</tr>
</tbody>
</table>

RESET REHEAT SUPPLY AIR SETPOINT
This is maximum temperature at which the Supply Air Temperature will reset to. Will display only in stand-alone mode. The Reset SAT Setpoint is set by the LCD Display in stand-alone mode and is set by the Main Controller in communicating mode.

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Default</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>40°F</td>
<td>70°F</td>
<td>150°F</td>
</tr>
<tr>
<td>5°C</td>
<td>21°C</td>
<td>65°C</td>
</tr>
</tbody>
</table>

Force Valves Screens

Refer to the following map when navigating through the Force Screens. From the FORCE VALVES Screen, press <ENTER>. At the FORCE MODE ON/OFF screen, press the <UP> arrow key to turn the FORCE MODE on and press the <DOWN> arrow key to turn the FORCE MODE off. Use the <UP> and <DOWN> arrow keys to increase and decrease the percentage.

FORCE VALVES

FORCE MODE ON/OFF

Press the <UP> button to turn the Force Mode on. Press the <DOWN> button to turn the Force Mode off.

FORCE VALVE PERCENTAGE

This screen only appears when Force Mode is on.
Press the <UP> button to increase the percentage. Press the <DOWN> button to decrease the percentage.

NOTE: When you turn the Force Mode back off or after 1 hour has elapsed, the valve will reinitialize to zero.

FORCE EXPANSION VALVE PERCENTAGE

This screen only appears when Force Mode is on and Expansion Valves are Enabled.
Press the <UP> button to increase the percentage. Press the <DOWN> button to decrease the percentage.

NOTE: When you turn the Force Mode back off or after 1 hour has elapsed, the valve will reinitialize to zero.

FORCE MODE TIME OUT

This screen will appear when the Force Mode times out after 1 hour.
Troubleshooting

LED Diagnostics

The MHGRV-X Controller is equipped with LEDs that can be used to verify operation and perform troubleshooting. There are LEDs for communication, operation modes, and diagnostic codes. The module has 14 LEDs—12 used for operation & status, and 2 used for alarms.

See Figure 5 on page 15 for the LED locations. The LEDs associated with these inputs and outputs allow you to see what is active without using a voltmeter. The LEDs and their uses are as follows:

Operation LEDs

POWER - This green LED will light up to indicate that 24 V AC power has been applied to the controller.

STATUS - This green LED will light up and blink the board address at startup. It will then blink according to what mode the controller is in. See Table 3. Only the highest priority failure code will be shown. You must correct the highest priority alarm before other problems will be indicated.

<table>
<thead>
<tr>
<th>No. of Blinks</th>
<th>STATUS LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Off Mode</td>
</tr>
<tr>
<td>2</td>
<td>Reheat Mode</td>
</tr>
<tr>
<td>3</td>
<td>Flush Mode</td>
</tr>
<tr>
<td>4</td>
<td>Force Mode</td>
</tr>
<tr>
<td>5</td>
<td>SAT Sensor Failure Mode</td>
</tr>
</tbody>
</table>

Table 3: STATUS LED Blink Codes

Diagnostic LEDs

ALARM - This red LED will light up to indicate an alarm. The type of alarm will display on the LCD display. The ALARM LED also blinks when the expansion valve is initializing at startup.

<table>
<thead>
<tr>
<th>No. of Blinks</th>
<th>ALARM LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Supply Air Temperature Sensor Failure</td>
</tr>
<tr>
<td>2</td>
<td>Communications Time Out Error</td>
</tr>
</tbody>
</table>

Table 4: ALARM LED Blink Codes

Relay LEDs

FAN - This green LED will light up to indicate that the relay for the “FAN” output is energized and its Normally Open Contact is closed.

COMP - This green LED will light up to indicate that the relay for the “COMP” output is energized and its Normally Open Contact is closed.

VALVE - This green LED will light up to indicate that the relay for the “VALVE” output is energized and its Normally Open Contact is closed.

AUX - This green LED will light up to indicate that the relay for the “AUX” output is energized and its Normally Open Contact is closed.

Binary Input LEDs

REHEAT ENABLE - This green LED will light up when the Reheat is enabled.

HEAT OVERRIDE - This green LED will light up when Heat Override is enabled.

COOL OVERRIDE - This green LED will light up when Cool Override is enabled.

Analog Output LEDs

CONDENSER VALVE DRIVE - This LED is on any time the condenser valve is moving.

REHEAT VALVE DRIVE - This LED is on any time the modulating hot gas reheat valve is moving, or alternatively, any time the 3 way valve is moving.

LED Troubleshooting

“POWER” LED: When the MHGRV-X Controller is powered up, the POWER LED should light up and stay on continuously. If it does not light up, check to be sure that the power wiring is connected to the board, the connections are tight, and the transformer is powered. If after making all these checks, the POWER LED does not light up, the board is probably defective.

“STAT” LED: As previously described, when the board is first powered up, the STAT LED will do the following:

- On for 10 seconds
- Blinks 30 times
- Blinks 3 times rapidly (after STEP LED is on for 45 seconds)
- Status code is repeatedly blinked every ten seconds to indicate controller status
Alarm Troubleshooting

Supply Air Temperature Failure:

- Verify that the Supply Air Temperature Sensor is connected to the SAT and GND on the MHGRV-X or MODGAS Controller (stand-alone mode or when using a CAV/VAV or MUA Controller) or to AI2 and GND on the Main Controller (communicating mode).
- Remove SAT and GND wiring from MHGRV-X and ohm sensor out (this may indicate open or failed wiring). Refer to chart in back of this guide for readings.
- Verify the SAT OPTIONS jumper settings on the MHGRV-X for the Supply Air Temperature Sensor.

Communications Loss:

- Check COMM LED on MHGRV-X.
- Verify 24 VAC power to all interconnected AAON controllers.
- Verify E-BUS connection between the MHGRV-X and associated AAON controllers.
- In communication mode (connected to an AAON Unit Controller with modular cable), confirm that Controller’s MHGRV-X status screen displays MHGRV-X’s Position % and that Main MHG Reheat screens show COMM MODE.
Troubleshooting

Other Checks

0-3V (SAT OPTIONS Jumper Settings Normal And MODGAS-X) & 0-5V (SAT OPTIONS Jumper Setting MODGAS) Supply Air Temperature Sensor

If you suspect the Supply Air Temperature Sensor is not reading correctly, make sure the wiring terminal connections are tight and that any wiring splices are properly connected. You can check the operation of the Supply Air Temperature Sensor by measuring the resistance or voltage using a digital multimeter. Set the meter to DC Volts. Place the positive probe on the AIN terminal and the negative probe on the GND terminal. Read the DC Volts and find that voltage in Tables 5 & 6.

Read the temperature corresponding with that voltage and determine if this is close to the actual temperature the sensor is exposed to. If the temperature from the chart is different by more than a few degrees, you probably have a defective or damaged sensor. You can also check the sensor resistance to determine correct operation. To read the resistance, set the meter to Ohms. Unplug the sensor connector from the board and measure the resistance across the disconnected wires. This resistance should match the corresponding temperature from Tables 5 & 6.

<table>
<thead>
<tr>
<th>Temperature to Resistance/Voltage Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp (°F)</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>-10</td>
</tr>
<tr>
<td>-5</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>52</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>56</td>
</tr>
<tr>
<td>58</td>
</tr>
<tr>
<td>60</td>
</tr>
</tbody>
</table>

Table 5: 0-3V Temperature Sensor - Voltage & Resistance for Type III Sensors

Thermistor Sensor Testing Instructions

1.) Use the resistance column to check the thermistor sensor while disconnected from the controllers (not powered).

2.) Use the voltage column to check sensors while connected to powered controllers. Read voltage with meter set on DC volts. Place the “-” (minus) lead on GND terminal and the “+” (plus) lead on the sensor input terminal being investigated.

If the voltage is above 3.3 VDC, the sensor or wiring is “open.” If the voltage is less than 0.05 VDC, the sensor or wiring is shorted.

Table 5, continued: 0-3V Temperature Sensor - Voltage & Resistance for Type III Sensors
Thermistor Sensor Testing Instructions

1.) Use the resistance column to check the thermistor sensor while disconnected from the controllers (not powered).

2.) Use the voltage column to check sensors while connected to powered controllers. Read voltage with meter set on DC volts. Place the “-” (minus) lead on GND terminal and the “+” (plus) lead on the sensor input terminal being investigated.

If the voltage is above 5.08 VDC, the sensor or wiring is “open.” If the voltage is less than 0.05 VDC, the sensor or wiring is shorted.

Table 6, cont.: 0-5V Temperature Sensor - Voltage & Resistance for Type III Sensors
Supply Air Temperature Sensor Installation

Mounting the Supply Air Temperature Sensor

The Supply Air Temperature Sensor should be located in the ductwork downstream of the unit supply air connection. Locate the sensor in the center of the widest part of the duct. Use the supplied template and a 5/16” drill to make a hole for the sensor. Install the gasket over the probe and mount securely to the duct using the supplied sheet metal screws. Be sure the gasket is compressed to provide an air tight seal. For best accuracy, apply insulation on the outside of the duct, over the sensor. This will help prevent thermal gradients from affecting the sensor.

WARNING: Make sure your Supply Air Temperature Sensor is mounted and wired according to these instructions prior to testing the unit or else the modulating valve will not control properly and may damage your equipment.

Stand-Alone Mode

In Stand-Alone Mode, the SAT Sensor is connected to the MHGRV-X Controller. If, in Stand-Alone Mode, the MHGRV-X Controller is used in conjunction with a Stand-Alone MODGAS-X Controller, the SAT sensor is shared between the two controllers and always attaches to the MODGAS-X Controller.

See Table 8 on page 19 for SAT Options Jumper Settings and see Figure 3 on page 6 for wiring.

Communication Mode

When communicating with AAON Unit Controllers, the SAT Sensor will be connected to the Main Controller. The exception would be in retrofit applications with older controllers. See Table 9 on page 19 for SAT Options Jumper Settings and see Figures 2 on page 5 for wiring. See Table 7 on page 19 and Appendix B on page 20 for details about retrofit applications.

![Supply Air Temperature Sensor Installation Diagram]

Figure 6: Supply Air Temperature Sensor Installation
APPENDIX A

SAT Sensor Wiring Guide & Jumper Settings

SAT Wiring Conditions

<table>
<thead>
<tr>
<th></th>
<th>MODGAS-X ONLY</th>
<th>MHGRV-X ONLY</th>
<th>MODGAS-X & MHGRV-X</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAND-ALONE</td>
<td>Install Supply Air Sensor in MODGAS-X.</td>
<td>Install Supply Air Sensor in MHGRV-X.</td>
<td>Install Sensor in MODGAS-X and daisy-chain it</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to the MHGRV-X. Set “SAT Options” Jumpers to “Normal”.</td>
</tr>
<tr>
<td>VCCX2, VCB-X</td>
<td>Install Supply Air Sensor in VCCX2 or VCB-X.</td>
<td>Install Supply Air Sensor in VCCX2 or VCB-X.</td>
<td>Install Supply Air Sensor in VCCX2 or VCB-X. Connect</td>
</tr>
<tr>
<td></td>
<td>Connect to VCCX2 or VCB-X using E-BUS cable.</td>
<td>Connect to VCCX2 or VCB-X using E-BUS cable.</td>
<td>to VCCX2 or VCB-X using E-BUS cable.</td>
</tr>
<tr>
<td>VCM-X, SA, RNE</td>
<td>Install Supply Air Sensor in Main Controller.</td>
<td>Install Supply Air Sensor in Main Controller.</td>
<td>Install Supply Air Sensor in Main Controller using iC</td>
</tr>
<tr>
<td></td>
<td>Connect to Main Controller using iC cable.</td>
<td>Connect to Main Controller using iC cable.</td>
<td>cable.</td>
</tr>
<tr>
<td>VCM, VAV/CAV, MUA,</td>
<td>Install Supply Air Sensor in MODGAS-X.</td>
<td>Install Supply Air Sensor in MHGRV-X.</td>
<td>Install Supply Air Sensor in MODGAS-X.</td>
</tr>
<tr>
<td>MUA II, MUA IID</td>
<td>Connect to Main Controller using iC cable.</td>
<td>Connect to Main Controller using iC cable.</td>
<td>Connect to Main Controller using iC cable.</td>
</tr>
</tbody>
</table>

Table 7: SAT Wiring Conditions

SAT Options Jumper Settings

Refer to Tables 8 & 9 to determine the SAT Option Jumper settings. See Figures 2 & 3 on pages 5 & 6 for jumper locations.

STAND-ALONE MODE SAT OPTIONS JUMPER SETTINGS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHGRV-X Only</td>
<td>Normal</td>
</tr>
<tr>
<td>MHGRV-X with MODGAS-X**</td>
<td>MODGAS-X</td>
</tr>
<tr>
<td>MHGRV-X with MODGAS II***</td>
<td>MODGAS</td>
</tr>
</tbody>
</table>

* For SAT Sensor testing, use Table 5 for Normal & MODGAS-X jumper setting and use Table 6 for MODGAS jumper setting.

** In this situation, also set MODGAS-X SAT Option to Jumper Setting 1. See the MODGAS-X Technical Guide for more information.

*** The MODGAS II must have PU1 resistor installed.

Table 8: Stand Alone Mode SAT OPTIONS Jumper Settings

COMMUNICATIONS MODE SAT OPTIONS JUMPER SETTINGS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCM / VCM-X / SA/ RNE *</td>
<td>Normal</td>
</tr>
<tr>
<td>MUA, VAV/CAV**</td>
<td>Normal</td>
</tr>
<tr>
<td>VCCX2, VCB-X*</td>
<td>Normal</td>
</tr>
</tbody>
</table>

* For SAT Sensor testing, use Table 5 for Normal jumper setting. SAT should be connected to the Main Controller.

** For SAT Sensor testing, use Table 5 for Normal jumper setting. SAT should be connected to the MHGRV-X Controller.

Table 9: Communications Mode SAT OPTIONS Jumper Settings
Replacing the MHGRV II with the MHGRV-X

The drop-in replacement involves a few easy steps. Refer to Figure 7.

STAND-ALONE MODE OPERATION

Step 1: Disconnect power from the MHGRV II Controller.

Step 2: Disconnect the Supply Air Temperature Sensor from the MHGRV II and wire it to the MHGRV-X. If the Supply Air Temperature Sensor is being shared with a Stand-Alone MODGAS Controller, maintain the same wiring with the MODGAS Controller.

Step 3: Separate the HGR Valve wires and the Condenser Valve wires onto the appropriate Reheat Drive and Condenser Drive terminal blocks per Figure 3, page 6. Wire all other inputs and outputs per Figure 3, also.

Step 4: Set the SAT Options Jumper per Table 8, page 19.

Step 5: Connect power to the MHGRV-X Controller.

COMMUNICATIONS MODE OPERATION

Step 1: Disconnect power from the MHGRV-II Controller.

Step 2: The Supply Air Temperature Sensor needs to remain installed on whatever controller it is currently on. If it is currently installed on the MHGRV II Controller, then reinstall it on the MHGRV-X Controller. If it is currently installed on the main unit controller or on a connected MODGAS Controller, it needs to remain there.

Step 3: Set the SAT Options Jumper per Table 9, page 19.

Step 4: Connect power to the MHGRV-X Controller.

Figure 7: MHGRV-X Controller

MHGRV-X CONTROLLER
V12100

1. Connect To MHGRV-X Controller In Stand-Alone Mode Or When Using VAV/CAV Or MUA Controller, If Also Using A MODGAS Controller In Stand Alone Mode, The SAT Sensor Connects To The MODGAS Controller.

2. Supply Air Temperature Sensor

Mount In Supply Air Duct

See Tables 7, 8 & 9 On Page 18 For SAT OPTIONS Jumper Settings. Only One Supply Air Temperature Sensor Can Be Used Per Application.

3. I2C Cable Connects To AAON Unit Controller's Port

4. 24 VAC Must Be Connected So That All Ground Wires Remain Common.

5. All Wiring To Be In Accordance With Local And National Electrical Codes And Specifications.
Overview

The V42450 Reheat Expansion Module is designed to control one set of reheat valves.

The Reheat Expansion Module connects to the MHGRV-X Controller via an EBC E-BUS communication cable.

Connected together, the Reheat Expansion Modules provide a system that allows the proper control of multiple sets of valves.

See Figure 8 for dimensions (in inches).

Features

The Reheat Expansion Module provides the following:

- Up to (7) Reheat Expansion Modules can be used
- Each Reheat Expansion Module controls one set of reheat valves (1 Reheat & 1 Condenser)
- Each Reheat Expansion Module has its own Cooling & Reheat Flush Timers
- Reheat Expansion Modules conveniently plug into one another

Figure 8: Reheat Expansion Module and Mounting Plate Dimensions
Installation & Wiring

Installation & Mounting

The Reheat Expansion Module is provided with a Chevron cut plastic snap track mounting base. The snap track is designed to be mounted using a ¼” Hex Head Sheet Metal Screw (provided) to a flat surface using the pre-punched mounting hole that is provided in the center of the snap track. The Reheat Expansion Module is then snapped into place on the snap track, providing for easy field mounting and servicing.

The Reheat Expansion Module needs to be installed in an environment which can maintain a temperature range between -30°F and 150°F not to exceed 90% RH levels (Non-Condensing). It is important to keep the module in a location that is free from extreme high or low temperatures, moisture, dust, and dirt. Be careful not to damage the electronic components.

NOTE: The Reheat Expansion Module contain no user-serviceable parts. Contact qualified technical personnel if your Controller or Module is not operating correctly.

General Wiring Information

For the wiring diagram to use when the MHGRV-X Controller is connected to an AAON Unit Controller, see Figure 2, page 5. For the stand-alone wiring diagram, see Figure 3, page 6.

For Reheat Expansion Board wiring, see Figure 9, page 23.

Please carefully read and apply the following information when wiring the Reheat Expansion Module(s):

1. 18 gauge minimum wire unless otherwise noted.
2. 24 VAC power connection with an appropriate VA rating.
3. Compressor Enable must have 24 gauge minimum wire.
4. All 24 VAC wiring must be connected so that all ground wires remain common. Failure to follow this procedure can result in damage to the module and connected devices.
5. All wiring is to be in accordance with local and national electrical codes and specifications.
6. Check all wiring leads at the terminal block for tightness. Be sure that wire strands do not stick out and touch adjacent terminals. Confirm that all transducers required for your system are mounted in the appropriate location and wired into the correct terminals.
Reheat Expansion Module(s) Wiring

Reheat Expansion Modules snap into each other at the power and Comm connectors. Up to (7) Reheat Expansion Modules can be used.

Apply power to the first Reheat Expansion Module in a series. The last Reheat Expansion Module in a series connects to the MHGRV-X Controller using an EBC E-BUS cable.

See Figure 9 below for details.

Figure 9: Reheat Expansion Module(s) Wiring

NOTE:
1.) Connect The Next Reheat Expansion Module To The Power Connector And Comm Connector Of The Previous Reheat Expansion Module In A Series. Up to (7) Expansion Modules Can Be Connected.
Initialization

The Reheat Expansion Module uses on-board LEDs to indicate various diagnostic conditions during power-up and operation. See the LED Operation section on page 25 for more information.

Modulating Hot Gas Valves

Each Reheat Expansion Module utilizes two modulating valves to control the flow of Hot Gas through the Hot Gas Reheat Coil. One of these valves is the Condenser Hot Gas Valve and the other is the Reheat Hot Gas Valve. The valves are wired to the Reheat Expansion Module’s Modulating Hot Gas Valve Output terminals. These valves work in concert with each other to create a “three-way valve” configuration. As one closes, the other opens, etc. All modes of operation that follow referring to the Hot Gas Reheat Valve are actually a combination of these two valves working together to achieve the specified sequence of operation.

Mode of Operation

The Reheat Expansion Module(s) can be used in MHGRV-X stand alone operation and when the MHGRV-X is communicating to an AAON Unit Controller.

Stand-Alone Operation

See page 8 for MHGRV-X stand-alone operation. Once the Reheat Expansion Module’s Binary Input Compressor input is enabled, the valve positions follow the MHGRV-X Controller.

Operation in Communicating Mode

In this mode, the MHGRV-X Controller behaves as an expansion board for an AAON Unit controller. See page 8 for detailed operation. Once the Reheat Expansion Module’s Binary Input Compressor input is enabled, the valve positions follow the MHGRV-X Controller.

Additional Features

Reheat Coil Flush

To assure positive oil return to the compressor, the Hot Gas Reheat Coil will be flushed of liquid refrigerant by moving the Modulating Gas Reheat Valve to its maximum position for a short interval.

Cooling Flush: If the unit is in cooling mode, a flush will occur when the unit’s flush cooling interval timer has elapsed. The time is accumulated whenever it is in cooling mode and resets after each flush cycle. The flush cooling interval timer is a setpoint that is configurable using the keypad and display (0 to 120 minutes in 10 minute increments). If enabled, each Reheat Expansion Module follows the same sequence as the MHGRV-X, using the same cooling flush interval timer of the MHGRV-X. The expansion boards do not flush at the same time.

Reheat Mode Flush: If the unit is in dehumidification mode and the valve is below 70% for the flush reheat interval timer value, a flush will occur. If the valve goes above 70%, the timer is reset. The flush reheat interval timer is a setpoint that is configurable using the keypad and display (0 to 120 minutes in 10 minute increments). If enabled, each Reheat Expansion Module follows the same sequence as the MHGRV-X, using the same flush reheat interval timer of the MHGRV-X. The expansion boards do not flush at the same time.

Optional Flush Mode Configurations: A configuration option is available that will provide a 30 second flush cycle whenever the unit enters the cooling, dehumidification, and heat pump modes. If using Reheat Expansion Module(s) in conjunction with the MHGRV-X Controller, a configuration option is available to force all the valves to flush synchronously instead of independently.

Contact AAON Controls Support for assistance in making these configuration changes.
LED Diagnostics

The Reheat Expansion Module is equipped with 4 LEDs that can be used to verify operation and perform troubleshooting.

See Figure 10 below for the LED locations. The LEDs associated with these inputs and outputs allow you to see what is active without using a voltmeter. The LEDs and their uses are as follows:

Operation LEDs

POWER - This green LED will light up to indicate that 24 VAC power has been applied to the Expansion Module.

STATUS - This green LED will light up and blink every 10 seconds according to valve position. One blink per 10%. Example: valve position is 67%. STATUS LED will blink 6 times every 10 second cycle. The STATUS LED will stay on solid during the 2 minute flush cycle. See Table 10 below.

<table>
<thead>
<tr>
<th>No. of Blinks</th>
<th>STATUS LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 10</td>
<td>Per 10% Valve Position</td>
</tr>
<tr>
<td>SOLID</td>
<td>During 2 Minute Flush Cycle</td>
</tr>
</tbody>
</table>

Table 10: STATUS LED Blink Codes

Communication LED

COMM - This amber LED will light up and blink once for every good packet received. Packets should be sent once every second, so Comm LED should blink the same, once every second. COMM LED should blink simultaneously on all modules.

Binary Input LED

COMPRESSOR ENABLE - This green LED will light up when the Reheat is enabled.

LED Troubleshooting

“**POWER**” LED: When the Reheat Expansion Module is powered up, the POWER LED should light up and stay on continuously. If it does not light up, check to be sure that the power wiring is connected to the board, the connections are tight, and the transformer is powered. If after making all these checks, the POWER LED does not light up, the board is probably defective.

“**STAT**” LED: When the board is first powered up, the STAT LED will do the following:

- On for 10 seconds
- Blinks 30 times
- Status code is repeatedly blinked every ten seconds to indicate valve position

MHGRV-X Field Technical Guide

25
APPENDIX C - REHEAT EXPANSION MODULE

Troubleshooting

Q & A

The following are common questions and their answers:

Q: Is there power to the expansion module?
A: The POWER LED should be lit at all times. If not, check the 24VAC input voltage. If the input voltage is confirmed and the POWER LED is not lit, the board is physically damaged.

Q: Is the expansion module communicating?
A: You should always see the COMM LED(s) blinking simultaneously on all modules. The communication chain is physically connected from board to board; however, the communications circuit is a parallel connection so it is possible one module could be inoperable while others down the chain are operating.

Q: Is the expansion module communicating?
A: If you see the COMM LED on solid, then the module has not detected communications for over 60 seconds.

Q: Is the valve position correct?
A: The STATUS LED will blink the valve position every 10 seconds if the valve is not closed. It will blink the position divided by 10. So, for example, if the position is 68%, the STATUS LED will blink 6 times.

Q: The STATUS LED is on solid. What does this mean?
A: The expansion module is performing its own flush cycle. Each expansion module tracks its own flush cycles. The flush time setpoints are always the same as the MHGRV-X setpoints.

Q: I have no Communications. Can my valve still drive?
A: If communication is lost, the valve will drive closed.

Q: How can I test if the expansion module will drive the valve?
A: From the MHGRV-X, you can go to the Force Menu and manually drive the expansion module valves open and closed.

Q: Are my valves wired correctly?
A: Both valves per circuit should be wired to the same terminal block.
A: The Condenser Valve should be wired (from top to bottom) BLACK, WHITE, RED, GREEN

A: The Reheat Valve should be wired (from top to bottom) BLACK, WHITE, GREEN, RED

Q: How do I confirm the expansion module is operating in Reheat (Dehumidification) mode?
A: Make sure the enable signal is activated by confirming that the ENABLE LED is on.
A: Make sure the COMM LED is blinking.
A: Compare the Valve Position displayed on the MHGRV-X screen with the number of STATUS LED blinks.
A: If all three things above are true, then the valve is operating correctly in Reheat mode.

Q: Are the communications wired and configured correctly?
A: For the MHGRV-X operating as stand-alone, the following should be true:
1. The MHGRV-X is connected to the Reheat Expansion Module with an E-BUS cable and the connections are secure.
2. The MHGRV-X must be configured as S/A LOCKED in the MHGRV-X Configuration Screens. To confirm this, press the ENTER key once from the main screen. It should display S/A MODE LOCKED.
3. The MHGRV-X must be configured for EXP VLVS ENABLED in the MHGRV-X Configuration Screens. If this is true, the COMM LED on the MHGRV-X will blink once every second.

A: For the MHGRV-X operating with a VCCX2/VCB-X, the following should be true:
1. The VCCX2 or VCB-X, MHGRV-X, and Reheat Expansion Module are connected to each other with an E-BUS cable and the connections are secure.
2. The MHGRV-X must be configured as S/A AUTODECT in the MHGRV-X Configuration Screens. To confirm this, press the ENTER key once from the main screen. It should display COMM MODE .
3. The MHGRV-X must be configured for EXP VLVS ENABLED in the MHGRV-X Configuration Screens. If this is true, the COMM LED on the MHGRV-X will blink once every second.

Q: How do I change configurations for the valve expansion modules?
A: Configurations will always match how the MHGRV-X is configured. The configurations are as follows:
1. Valve Size (hidden screen configuration)
2. Cooling Flush Time (setpoint screens when stand-alone)
3. Reheat Flush Time (setpoint screens when stand-alone)
4. Reheat Flush Reset Position (cannot be changed by user)