TABLE OF CONTENTS

OVERVIEW ... 4
 Features and Applications .. 4
 Module Dimensions ... 5

INSTALLATION & WIRING ... 6
 Input Wiring .. 6
 Suction Pressure Sensor .. 6
 Head Pressure Sensor .. 6
 Coil Temperature Sensors ... 6
 Output Wiring ... 7
 Expansion Valves ... 7
 Modulating Compressor ... 7
 Condenser Fan Signal .. 7

INPUTS & OUTPUTS ... 8

SEQUENCE OF OPERATIONS ... 10
 Cooling Mode ... 10
 Dehumidification Operation ... 10
 Expansion Valve Operation ... 10
 Head Pressure Control .. 10
 Superheat Control ... 11
 Heat Pump Standard Defrost Operation ... 11
 Heat Pump Adaptive Defrost Operation .. 11
TABLE OF CONTENTS

RSMV-HP LCD Screens
- RSMV-HP Main Screens Map ... 12
- RSMV-HP Module Screens .. 13
- System Status Screens ... 14
- Sensor Status Screens .. 15
- Setpoint Status Screens .. 15
- Alarms Screen and Definitions .. 16
- Alarm History Screen .. 17
- Protected Screens Map .. 17
- Diagnostics Screens ... 18
- Alarm Counts Screen .. 19
- Address Screen .. 19

Troubleshooting
- LED Diagnostics .. 20
- Suction Pressure Transducer Testing .. 21
- Coil Temperature Sensor Testing ... 22
- Head Pressure Transducer Chart .. 23

Appendix: System Configuration Using Prism 2
- One Condenser Per RSMV ... 24
- One Condenser Per 2 RSMVs .. 25
- One Condenser For 3 RSMVs .. 26
- One Condenser For 4 RSMVs .. 27
- System Configuration Options ... 28
Features & Applications

The OE370-26-RSMV-HP Refrigerant System Module for VFD Heat Pump Compressors (RSMV-HP) (AAON Part No: V61540) monitors and controls one refrigeration circuit of the HVAC unit. The module is designed for R410-A refrigerant.

The RSMV-HP is connected to the VCC-X / VCCX2 Controller. Up to 4 RSMV-HP's can be connected, depending on the size of the system. There are 2 E-BUS Expansion Ports which allow the use of communicating sensors and the E-BUS Modules.

The RSMV-HP provides 6 analog inputs, 4 binary inputs, 4 relays, and 2 analog outputs. See Figures 2 & 3, pages 6 & 7 for wiring.

The RSMV-HP Module provides the following:

- Modulates the Compressors to satisfy the Suction Coil (Saturated) Temperature. The Suction Coil (Saturated) Temperature Setpoint is reset by the VCC-X / VCCX2 Controller to maintain the Supply Air Temperature during Cooling Mode. During Dehumidification Mode, it controls the Compressors to the Suction (Saturation) Temperature Setpoint.
- Modulates the Condenser Fan to maintain the Head Pressure Setpoint.
- Modulates the Expansion Valves to maintain the Superheat Setpoint.
- Provides alarms and safeties for the compressor and condenser operation.
- Provides a 2 x 8 LCD character display and 4 buttons that allow for status of system operation, system setpoints, system configurations, sensors, and alarms and to change the module's address, if necessary.
Figure 1: RSMV-HP Dimensions
RSMV-HP Wiring

The RSMV-HP monitors and controls one refrigeration circuit of the HVAC unit. The module is designed for R410-A refrigerant.

The RSMV-HP is connected to the VCC-X / VCCX2 Controller. Up to 4 RSMV-HP's can be connected, depending on the size of the system. There are 2 E-BUS Expansion Ports which allow the use of communicating sensors and the E-BUS Modules.

The RSMV-HP provides 6 analog inputs, 4 binary inputs, 4 relays, and 2 analog outputs. See Figure 2, below for inputs wiring and Figure 3, page 7 for outputs wiring.

Suction Pressure Sensor Wiring

The OE275-01 Suction Pressure Transducer must be wired as shown in Figure 2, below. It is required for all compressorized VCC-X / VCCX2 applications.

The Suction Pressure Sensors are used to measure suction pressure at the HVAC unit's DX evaporator coil suction line. This suction line pressure is converted to saturated refrigerant temperature. The saturated refrigerant temperature is used to properly control the compressors to maintain a given Suction Coil (Saturated) Temperature Setpoint. In Cooling and Heat Pump mode, the VCC-X / VCCX2 resets the Suction Coil (Saturated) Temperature Setpoint to maintain a given supply air temperature setpoint. In Dehumidification mode, the Suction Coil (Saturated) Temperature Setpoint is a user configurable setpoint that does not reset.

Figure 2: RSMV-HP Inputs Wiring
Coil Temperature Sensors

The Coil Temperature Sensors are used to measure Coil Temperature after each evaporator coil line. This temperature combined with the calculated saturated refrigerant temperature is used to calculate the Superheat of each individual evaporator coil. The Superheat is used to drive the Expansion Valves to maintain a given Superheat Setpoint.

Leaving Water Temperature Sensor

The Leaving Water Temperature Sensor is used to measure the Leaving Water Temperature when used on a WSHP unit.
RSMV-HP Input/Output Map

See Table 1, below for the RSMV-HP Inputs/Outputs.

Table 1: RSMV-HP Inputs & Outputs

<table>
<thead>
<tr>
<th>Analog Inputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Suction Pressure Sensor (SP)</td>
<td></td>
</tr>
<tr>
<td>2 Head Pressure Sensor (HP)</td>
<td></td>
</tr>
<tr>
<td>3 Coil (Suction Line) Temperature Sensor 1 (TEMP1)</td>
<td></td>
</tr>
<tr>
<td>4 Coil (Suction Line) Temperature Sensor 2 (TEMP2)</td>
<td></td>
</tr>
<tr>
<td>5 Coil (Suction Line) Temperature Sensor 3 (TEMP3)</td>
<td></td>
</tr>
<tr>
<td>6 Coil (Suction Line) Temperature Sensor 4 (TEMP4)</td>
<td></td>
</tr>
<tr>
<td>7 Leaving Water Temperature Sensor 1 (TEMP5)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Binary Inputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Compressor Status 1 (BIN1)</td>
<td></td>
</tr>
<tr>
<td>2 Compressor Status 2 (BIN2)</td>
<td></td>
</tr>
<tr>
<td>3 Coil Temperature Switch / Proof of Water Flow (BIN3)</td>
<td></td>
</tr>
<tr>
<td>4 Not Used (BIN4)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analog Outputs (0-10 VDC)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Modulating Compressor (AOUT1)</td>
<td></td>
</tr>
<tr>
<td>2 Condenser Valve Signal (AOUT2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stepper Motor Outputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Expansion Valve 1 (EXV-1)</td>
<td></td>
</tr>
<tr>
<td>2 Expansion Valve 2 (EXV-2)</td>
<td></td>
</tr>
<tr>
<td>3 Expansion Valve 3 (EXV-3)</td>
<td></td>
</tr>
<tr>
<td>4 Expansion Valve 4 (EXV-4)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Binary Outputs (24 VAC)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Compressor 1 Enable Relay (RLY1)</td>
<td></td>
</tr>
<tr>
<td>2 Compressor 2 Enable Relay (RLY2)</td>
<td></td>
</tr>
<tr>
<td>3 Condenser Enable Relay (RLY3)</td>
<td></td>
</tr>
<tr>
<td>4 Reversing Valve Relay (RLY4)</td>
<td></td>
</tr>
</tbody>
</table>
RSMV-HP - Inputs & Outputs

+5V VDC Power
This output is a 5 VDC output that supplies power to the Suction Pressure Transducer.

SP - Suction Pressure Transducer
The Suction Pressure Sensor is used to measure suction pressure at the HVAC unit’s DX evaporator coil suction line. This suction line pressure is converted to saturated refrigerant temperature. This temperature combined with the measured temperature of the coil temperature sensors is used to calculate Superheat. The Superheat is used to drive the Expansion Valves to maintain a certain Superheat Setpoint. The saturated refrigerant temperature is also used in the Dehumidification mode of operation to properly control the compressors to maintain a given Suction Coil (Saturated) Temperature Setpoint.

+5V VDC Power
This output is a 5 VDC output that supplies power to the Head Pressure Transducer.

HP - Head Pressure Transducer
The Head Pressure Transducer is used to measure Head Pressure at the discharge line. This Head Pressure is used to drive the Condenser Fans to maintain a given Head Pressure Setpoint.

TEMP1, TEMP2, TEMP3 & TEMP4 - Coil (Suction Line) Temperature Sensors 1 - 4 Inputs
These Sensors are used to measure the Coil (Suction Line) Temperature after each evaporator coil line. This temperature combined with the calculated saturated refrigerant temperature is used to calculate the Superheat of each individual evaporator coil. The Superheat is used to drive the Expansion Valves to maintain a given Superheat Setpoint.

TEMP5 - Leaving Water Temperature Sensor Input
This sensor is used to measure the Leaving Water Temperature. This temperature is converted to the calculated saturated refrigerant temperature is used to properly control each individual compressor coil.

BIN1 - Compressor Status 1
When this wet contact input closes, a 24 volt signal to Binary Input #1 indicates that Compressor 1 is running. Typically, the source for this is a relay output from the compressor VFD drive. If Binary Input 1 opens, Compressor 1 Enable Relay will de-energize and a Compressor Alarm will be generated.

BIN2 - Compressor Status 2
When this wet contact input closes, a 24 volt signal to Binary Input #2 indicates that Compressor 2 is running. Typically, the source for this is a relay output from the auxiliary contact on the compressor starter. If Binary Input 2 opens, Compressor 2 Enable Relay will de-energize and a Compressor Alarm will be generated.

BIN3 - Outside Coil Temperature Switch / Proof of Water Flow
When this wet contact input closes, a 24 volt signal to Binary Input #3 indicates that.

BIN4 - Not Used

NOTE: The Binary Inputs require wet contacts (24 VAC only) to recognize an active input. If you provide dry contacts, the contact closure will not be recognized.

AOUT1 - Modulating Compressor Signal
This 0-10 VDC output is used to control a Modulating Compressor to maintain the Cooling Supply Air Temperature Setpoint.

AOUT2 - Condenser Fan VFD Signal
This is a direct acting output signal that is used to modulate the Condenser Fan VFD (0-10 VDC signal) on an Air Cooled unit.

EXV-1 - Operable in Cooling Mode
The Electronic Expansion Valve 1 is driven to maintain Superheat for Evaporator Coil 1 of its particular refrigerant system.

EXV-2 - Operable in Cooling Mode
The Electronic Expansion Valve 2 is driven to maintain Superheat for Evaporator Coil 2 of its particular refrigerant system.

EXV-3 - Operable in Heating Mode
The Electronic Expansion Valve 3 is driven to maintain Superheat for Evaporator Coil 3 of its particular refrigerant system.

EXV-4 - Operable in Heating Mode
The Electronic Expansion Valve 4 is driven to maintain Superheat for Evaporator Coil 4 of its particular refrigerant system.

RLY1 - Compressor 1 Enable
This relay turns on the Modulating Compressor.

RLY2 - Compressor 2 Enable
This relay turns on the Fixed Compressor.

RLY3 - Condenser Enable
This relay turns on the Condenser Fan / Water Valve.

RLY4 - Reversing Valve Enable
This relay turns on the Reversing Valve.
Cooling Mode

In the Cooling Mode, as the Supply Air Temperature (SAT) rises above the Active SAT Cooling Setpoint, the compressors will stage on and modulate to maintain the Active Evaporator Coil Suction (Saturated) Temperature Setpoint. Each set of tandem compressors (a VFD compressor and a fixed stage compressor) are controlled per Refrigerant System Module-VFD Compressor (RSMV). Multiple RSMVs are needed for multiple sets of tandem compressors.

In units with one set of tandem compressors, if the VFD compressor modulates to 100% and the SAT is still above the SAT Cooling Setpoint for the Cooling Stage Up Delay, then the fixed compressor will stage on. The VFD compressor will then be allowed to modulate as necessary to maintain the Active Evaporator Coil Suction (Saturated) Temperature Setpoint. Minimum off times must also be met before compressors can stage on.

To stage down compressors, if the VFD compressor(s) have modulated down to 30% for the Stage Down Delay period and the SAT has fallen below the SAT Cooling Setpoint minus the Stage Control Window, then the last compressor to have staged on (VFD or Fixed) will stage off – assuming its Minimum Run Time has been met. Any remaining VFD compressors are then allowed to modulate as needed. If the last remaining VFD compressor reaches 0% for the Stage Down Delay, it will stage off.

Dehumidification Operation

Once in Dehumidification Mode, units with fixed compressors will activate the compressors to maintain the Evaporator Coil Suction (Saturated) Temperature Setpoint. An RSMV Module will be required for each fixed compressor or each fixed compressor tandem pair in order to monitor the suction (saturated) temperature and control the compressor(s) accordingly. Each RSMV will independently activate and stage its compressor(s) to maintain that circuit’s Suction (Saturated) Temperature Setpoint. The staging of compressors on an RSMV is subject to Stage Up and Stage Down Delays as well as compressor Minimum Run Times and Minimum Off Times.

A suction pressure transducer is used and the VCC-X / VCCX2 Controller converts that to a Suction (Saturated) Temperature value.

On units with one or more sets of VFD/Fixed tandem compressors, each set of tandem compressors (one circuit) will be controlled by a separate RSMV Module with its own Suction Pressure Transducer (converted to a Suction (Saturated) Temperature). Once the unit enters the Dehumidification Mode, each RSMV will initially activate the VFD compressor as required to maintain the Suction (Saturated) Temperature Setpoint. At that point each RSMV will modulate its VFD compressor and enable the fixed compressor, as necessary, to maintain the Suction (Saturated) Temperature Setpoint for that circuit.

If the VFD compressor reaches 100% for the Stage Up Delay and the Suction (Saturated) Temperature is still above setpoint, then the fixed compressor will stage on while the VFD compressor modulates as needed. If the VFD compressor has modulated down to 0% and the Suction (Saturated) Temperature is 5 degrees below the Suction (Saturated) Temperature for the Stage Down Delay period, the fixed compressor will stage off and the VFD compressor will continue to modulate. During this operation, compressor Minimum Run Times and Minimum Off Times must be met.

Electronic Expansion Valve (EXV) Operation

If EXV’s are being used, a Coil (Suction Line) Temperature Sensor will measure the Coil (Suction Line) Temperature after each Evaporator Coil line for each compressor, and this sensor will be connected to an RSMV-HP Module. This temperature will be used in conjunction with the calculated saturated refrigerant temperature to calculate the Superheat of each evaporator coil. The EXV for each coil will then be controlled to maintain the Superheat Setpoint.

Head Pressure Control

The Refrigeration System Module for VFD Heat-Pump Compressors (RSMV-HP) can monitor a Head Pressure Transducer and control a Condenser Fan to maintain a Head Pressure Setpoint. The RSMV-HP must be configured for an Air Cooled Condenser.

A Condenser Relay is commanded on when the first compressor is enabled (except if the unit is in Heat Pump Defrost Mode). On an Air Cooled Unit, the Condenser Fan will be controlled with 0-10 VDC output signal or a PWM output signal. Both outputs operate simultaneously.

When the Condenser Signal first activates, it maintains at 100% for 10 seconds.

In the Cooling Mode, the Condenser Signal will modulate to maintain the Cooling Head Pressure Setpoint. The signal can modulate between 15% and 100%. If the Head Pressure exceeds 550 PSIG, the condenser control signal will immediately go to 100% and a High Head Pressure Alarm will be generated. The alarm will be deactivated when the Head Pressure drops below 540 PSIG.

In the Dehumidification Mode, the Condenser Output Signal controls to the Reheat Head Pressure Setpoint. High Head Pressure conditions produce the same effects as in the Cooling Mode.

If no Head Pressure Sensor is detected, the Condenser the Condenser Output Signal will be maintained at 100%.
Superheat Control and Heat Pump Operation

Heating and Cooling Superheat Control

When there is a demand for Heating, the reversing valve changes the direction and operation of the refrigerant system according to its configuration. EXV 1 and EXV 2 that are located at the evaporator coils are bypassed with a mechanical check valve during Heating. EXV 3 and EXV 4 (optional) that are located at the condenser coils are modulated to maintain a Superheat Setpoint. The calculated Superheat is derived from Coil Temperature Sensors 3 & 4 along with the Suction Pressure (Saturation) Temperature. The refrigerant system can be configured for one or two Condenser EXVs depending on the mechanical layout. If two Condenser EXVs are configured, both EXVs will be activated to maintain the Superheat Setpoint when any of the two compressors are activated.

When there is a demand for Cooling, the reversing valve changes the direction and operation of the refrigerant system according to its configuration. EXV 1 and EXV 2 that are located at the evaporator coils are modulated to maintain a Superheat Setpoint. The calculated Superheat is derived from Coil Temperature Sensors 1 and 2 along with the Suction Pressure (Saturation) Temperature. EXV 3 and EXV 4 (optional), located at the condenser coils, are bypassed with a mechanical check valve during Cooling. Since the evaporator coils are piped in parallel, both EXVs will be activated to maintain the Superheat Setpoint when any of the two compressors are activated.

Heat Pump Standard Defrost Operation

If using the RSMV-HP with an installed Coil Temperature Switch, a Defrost Cycle is available.

If the compressor(s) are operating in the Heating Mode and the Defrost Coil Temperature Switch closes, the unit will enter the Defrost Mode, provided the user-adjustable Defrost Interval Timer has elapsed since the last Defrost Cycle.

In the Defrost Cycle, the reversing valve signal is switched to the opposite operation, and the compressors are brought to maximum capacity. Auxiliary Heat will be used to attempt to maintain the Heating SAT Setpoint.

The unit will leave the Defrost Mode after 10 minutes have elapsed or the Coil Temperature Switch opens.

If the unit leaves the compressor heating mode, the Defrost Interval will restart once the unit re-enters the compressor heating mode.

Heat Pump Adaptive Defrost Operation

The Adaptive Defrost operation adjusts the time interval (Adaptive Defrost Timer) in between Defrost Mode cycles.

As stated above, the unit will leave the Defrost Mode after 10 minutes have elapsed or the Coil Temperature Switch opens. If the Defrost Cycle is terminated because the 10 minute timer runs out, this could be an indicator that the unit may need more defrost time. To address this issue, the Adaptive Defrost Timer value will be subtracted from the original Defrost Interval.

If the Defrost Cycle is terminated between the 8th and 9th minute, the Defrost Interval will not be changed.

If the Defrost Cycle is terminated before the 8th minute, this could be an indicator that the unit may need less defrost time. To address this issue, the Adaptive Defrost Timer value will be inversely proportionally added to the original Defrost Interval as the termination time moves from 8 minutes to 0 minutes.

Adaptive Defrost can be disabled by setting the VCC-X / VCCX2 Controller’s Adaptive Defrost Timer Setpoint to 0.
LCD SCREENS

Navigation Keys & Main Screen Map

LCD Display Screen & Navigation Keys

The LCD display screens and buttons allow you to view status and alarms, and enable force modes. See Figure 4, below and refer to Table 2 for descriptions.

![LCD Display and Navigation Keys](image)

Figure 4: LCD Display and Navigation Keys

<table>
<thead>
<tr>
<th>NAVIGATION KEY</th>
<th>KEY FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENU M</td>
<td>Use the MENU key to move through screens within Main Menu categories and return to the Main Menu while at other screens.</td>
</tr>
<tr>
<td>UP</td>
<td>Use this key to adjust setpoints and change configurations.</td>
</tr>
<tr>
<td>DOWN</td>
<td>Use this key to adjust setpoints and change configurations.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Use the ENTER key to navigate through the Main Menu Screen categories.</td>
</tr>
</tbody>
</table>

Table 2: Navigation Key Functions

RSMV-HP Main Screens Map

Refer to the following map when navigating through the LCD Main Screens. To scroll through the screens, press the <MENU> button.

![RSMV-HP Main Screens Map](image)
RSMV-HP Module Screens

Refer to the following map when navigating through the RSMV-HP Screens. From the RSMV-HP Screen, press <ENTER> to scroll through the screens.

RSMV-HP 1072vXXX

E-BUS #

E-BUS COMMUNICATION DIAGNOSTICS
Number of COMM packets received.

SOFTWARE 1072vXXX

CURRENT SOFTWARE VERSION
You can access the protected screens from this screen by holding the <UP> button for 5 seconds.

ADDRESS # (XXX)

CURRENT BOARD ADDRESS

SYS TYPE WSHP, HEATPUMP, COOLONLY

CURRENT SYSTEM TYPE

#OF COMP #

OF COMPRESSORS

#OF EXVs EV=# C=#

OF EXPANSION VALVES
EV = Evaporator EXVs C = Condenser EXVs

COMP A1 MOD OR FIXED

COMPRESSOR A1 STATUS

OF COND 1 or 0

OF CONDENSERS
System Status Screens

From the SYSTEM STATUS Screen, press <ENTER> to scroll through the screens.

- **SYSTEM STATUS**
- **MODE**
 - **SYSTEM MODE**
 - Possible choices are: OFF, COOL, HEAT, DEHUMID, FORCE
 - **COMP A1-D1**
 - OFF / MODULATING %
 - **COMP A2-D2**
 - ON / OFF
 - **COMP A3-D3**
 - **COMP A4-D4**
- **EXV A1-D1**
 - EXV VALVE POSITION - 0 to 100 percent
- **EXV A2-D2**
 - EXV VALVE POSITION - 0 to 100 percent
- **EXV A3-D3**
 - EXV VALVE POSITION - 0 to 100 percent
- **EXV A4-D4**
 - EXV VALVE POSITION - 0 to 100 percent
- **EXV A1-D1**
 - OFF / MODULATING %
- **EXV A2-D2**
 - OFF / MODULATING %
- **EXV A3-D3**
 - OFF / MODULATING %
- **EXV A4-D4**
 - OFF / MODULATING %
- **H2O VALV**
 - NOT USED, ON, OFF, FORCE
- **WATER VALVE**
 - NOT USED, ON, OFF, FORCE
- **COND FAN**
 - NOT USED, OFF / MODULATING %
- **CONDENSER FAN**
 - NOT USED, OFF, MODULATING POSITION (0-100%)
Sensor Status Screens

Refer to the following map when navigating through the Sensor Status Screens. From the SENSOR STATUS Screen, press <ENTER> to scroll through the screens.

Setpoint Status Screens

Refer to the following map when navigating through the Setpoint Status Screens. From the SETPOINT STATUS Screen, press <ENTER> to scroll through the screens.
Setpoint Status Screens & Alarms Screen

LOW SUCTION PRESSURE SETPOINT SETTING
Default is 95 PSI.

COIL TEMPERATURE SETPOINT SETTING
Valid range is 35 to 70 degrees. Default is 40 degrees.

GLYCOL %
Valid range is 0-100 percent. Default is 0 percent.

LOW H2O
Valid range is X-XX Deg F. Default is 37 Deg F.

DEFROST INTERVAL TIME
Time before defrost is allowed to activate.

NO ALARMS: This will be shown if there are no current alarms.

NO SUCTION PRESSURE SENSOR (SUCTION) DETECTED:
This alarm indicates the Suction Pressure Sensor is not detected by the system. The system will shut down due to Unsafe Suction safety and will retry after 5 minutes.

HIGH HEAD PRESSURE (HP) DETECTED: This indicates a High Head Pressure Alarm condition which is activated when the Head Pressure rises above 550 PSIG. This will cause the condenser to go to 100%.

NO HEAD PRESSURE SENSOR (HEAD) DETECTED: This alarm indicates the Head Pressure Sensor is not detected by the system. This will cause the condenser to go to 100%.

COIL TEMP A1 - D1, A2-D2, A3-D3, A4-D4 FAILURE:
This alarm will occur if the coil temperature is not within operable range (below -32F or above 310F). This could be the result of a bad sensor or faulty wiring. This alarm will shut down the system. The system will reset after 5 minutes if the sensor is detected.

COMPRESSOR (COMP) A1 FAILURE:
This alarm will occur if the compressor fails to run 45 seconds after the relay is activated or if the signal is lost after activation. This will cause an alarm and will shut down the compressor (relay). The system will retry after 5 minutes.

COMPRESSOR (COMP) A2 FAILURE:
This alarm will occur if the compressor fails to run 45 seconds after the relay is activated or if the signal is lost after activation. This will cause an alarm and will shut down the compressor (relay). The system will retry after 5 minutes.

LOW SUCTION PRESSURE SETPOINT SETTING
Default is 95 PSI.

LOW SUCT
95 psi

GLYCOL %
0%

LOW H2O
37 DEG F

DEFROST INTERVAL TIME
XX MIN

LOW SUCTION PRESSURE (SP) DETECTED: This alarm will occur if suction pressure falls below the low suction pressure setpoint for 20 seconds. The system will try to protect by lowering compressor modulation percentage.

LOW SUCTION PRESSURE FAILURE: This alarm will occur if suction pressure stays below the low suction pressure setpoint for 1 minute or falls below 40 psi for 5 seconds. This alarm will shut down the system. The system will retry after 5 minutes.

EBUS SLAVE (SLV) TIMEOUT: This alarm indicates that communication has been lost between the RSMV and the Main controller or other E-BUS modules that may be connected. This can be the result of a bad cable, a missing cable, or the module not being configured properly.

Alarms Screens

If an alarm is present, the ALARM LED above the LCD display will light up red and blink. The Alarms will display and scroll automatically from the ALARMS screen when alarms are present.
LOW LEAVING WATER TEMP: This alarm indicates that the Leaving Water Temperature is below the safe Leaving Water Temperature Setpoint.

NO WATER FLOW: This alarm indicates that the Proof of Water Flow Signal is not detected or is lost.

Alarm History Screens

The ALARM HISTORY Screen displays past alarms, if any, and how long ago the last of each type occurred. From the ALARM HISTORY Screen, press <ENTER> to scroll through the history screens.

The Alarm will appear on the first line and the second line will display how long ago each alarm last occurred. As a result, the alarms listed on the ALARMS screen will be abbreviated as follows in order of the way they are listed in the prior ALARMS screen section.

LOW SP—Low Suction Pressure
UNSAFE SP—Unsafe Suction Pressure
SP SENSE—No Suction Pressure Sensor Detected
HIGH HP—High Head Pressure
HP SENSE—No Head Pressure Sensor Detected
CL TMP 1—Coil Temp 1 Failure
CL TMP 2—Coil Temp 2 Failure
CL TMP 3—Coil Temp 3 Failure
CL TMP 4—Coil Temp 4 Failure
COMP 1 FL—Compressor 1 Failure
COMP 2 FL—Compressor 2 Failure
LOW SH1—Low Superheat 1
LOW SH2—Low Superheat 2
LOW SH3—Low Superheat 3
LOW SH4—Low Superheat 4
HI SH1—High Superheat 1 Failure
HI SH2—High Superheat 2 Failure
HI SH3—High Superheat 3 Failure
HI SH4—High Superheat 4 Failure
COMM T/0—E-BUS Slave Timeout
NO H2O FLO—No Proof of Water Flow
LO H2O TMP—Low Water Temperature

NOTE: The screen will display minutes for the first 60 minutes of alarm occurrence, hours for the next 72 hours of alarm occurrence, and days for the next 30 days of alarm occurrence. After 30 days, the alarm will clear. Alarm history is not stored in memory. So, if power is lost, the alarms will clear.

Protected Screens Map

Refer to the following map when navigating through the LCD Protected Screens. From the RSMV-HP Screen, press <ENTER> twice to get to the Software Screen. Then hold the <UP> button for 5 seconds. To scroll through the rest of the screens, press the <MENU> button.
Diagnostic Screens

Refer to the following map when navigating through the Diagnostic Screens. From the DIAGNSTC Screen, press <ENTER> to scroll through the screens.

- **VFD TEST**
 - **M**
 - ENTER TO EXIT

- **BIN 1 - BIN 4**
 - **ON/OFF**
 - BINARY INPUTS #1 - #4
 - Displays the current status of each Binary Input.

- **ADDRESS 1 (152)**

- **SUCTION PRESSURE SENSOR VOLTAGE**
 - Displays the current voltage of the Suction Pressure Sensor.

- **SP-A VLT X.XX**

- **SPINNING**

- **HEAD PRESSURE SENSOR VOLTAGE**
 - Displays the current voltage of the Head Pressure Sensor.

- **HP-A VLT X.XX**

- **COIL TEMPERATURE SENSORS 1 - 4 VOLTAGES**
 - Displays the current voltage of the Coil Temperature Sensor.

- **TMP1 - TMP 4 VLT X.XX**

- **LEAVING WATER TEMPERATURE SENSOR 5 VOLTAGE**
 - Displays the current voltage of the 2nd Coil Temperature Sensor.

- **TMP5 VLT X.XX**

- **FORCE MODE**
 - Displays the current status of Force Mode. Values are ON/OFF.

- **FORCE MODE**

- **RELAYS 1 - 4 FORCE MODE**
 - Press the <UP> and <DOWN> buttons to select ON or OFF for each relay.
Diagnostic Screens

AOUT - 1 V
0.0 - 10.0 vdc

MODULATING COMPRESSOR FORCE MODE
0.0 to 10.0 = Active Force Mode.
Press the <UP> and <DOWN> buttons to increase and decrease the value.

AOUT - 2 V
1.0 - 10.0 vdc

CONDENSER FAN FORCE MODE
1.0 to 10.0 = Active Force Mode.
Press the <UP> and <DOWN> buttons to increase and decrease the value.

EXV 1 - 4 %
#%

EXPANSION VALVES OPEN PERCENTAGE
1.0 to 10.0 = Active Force Mode.
Press the <UP> and <DOWN> buttons to increase and decrease the value.

WDOG CNT
#

WATCH DOG TIMER
Displays the number of times the board has been reset due to watch-dog timer overflow.

POWER CNT
#

POWER LOSS COUNT
Displays the number of times the board has been reset due to power loss.

EPROM: HOLD

LOAD DEFAULTS

ENTER TO EXIT

ALARM COUNTS Screens

From the ALARM COUNTS Screen, press <ENTER> to scroll through the screens. Each screen will display the name of the alarm and how many times the alarm has occurred since you last cleared the alarms. The only way to clear these alarm counts is by using Prism 2 and selecting, “Select Alarms to Delete” from the ALARM button menu. See “Alarm Polling” in the Prism 2 Technical Guide for more information.

Address Screen

ADDRESS
1 (152)

CURRENT BOARD ADDRESS
Configure the address according to which refrigerant circuit this module represents—1=A, 2=B, 3=C, 4=D
Number in parentheses is E-BUS address.
Module 1’s address is 152, Module 2’s address is 153, Module 3’s address is 154, Module 4’s address is 155
Using RSMV-HP LEDs To Verify Operation

The RSMV-HP’s are equipped with LEDs that can be used to verify operation and perform troubleshooting. There are LEDs for communication, operation modes, and diagnostic codes. See Figure 5, below for the LED locations. The LEDs associated with these inputs and outputs allow you to see what is active without using a voltmeter. The LEDs and their uses are as follows:

Diagnostic LEDs

STATUS - If the software is running, this LED should blink at a rate of 1 blink per second.

ALARM (on board) - If the module does not receive communications for more than 1 minute, this LED will light up, the relays will turn off, and the Analog Outputs will go to 0 VDC.

ALARM (above LCD display) - This red LED will light up and stay lit when there is an alarm present. The type of alarm will display on the LCD display. The ALARM LED also blinks when the expansion valve is initializing at startup.

COMM - Every time the module receives a valid E-BUS request from the VCC-X / VCCX2 Controller, this LED will blink on and then off, signifying that it received a valid request and responded.

POWER - This LED will light up to indicate that 24 VAC power has been applied to the controller.

Binary Input LEDs

BIN1 - This green LED will light up when Compressor Status 1 contact is closed.
BIN2 - This green LED will light up when Compressor Status 2 switch is closed.
BIN3 - This green LED will light up when the Outside Coil Temperature switch is closed.

Relay LEDs

RLY1 - RLY4 - These green LEDs will light up when the relays are enabled and will stay lit as long as they are active.

RSMV-HP Stepper Motor Valve LEDs

EXV-1 - This green LED will light up when Expansion Valve 1 is modulating.
EXV-2 - This green LED will light up when Expansion Valve 2 is modulating.
EXV-3 - This green LED will light up when Expansion Valve 1 is modulating.
EXV-4 - This green LED will light up when Expansion Valve 2 is modulating.
OE275-01 Suction Pressure Transducer Testing for R410A Refrigerant

The Evaporator Coil Temperature is calculated by converting the Suction Pressure to Temperature. The Suction Pressure is obtained by using the OE275-01 Suction Pressure Transducer, which is connected into the Suction Line of the Compressor.

Use the voltage column to check the Suction Pressure Transducer while connected to the RSMV/RSMD Module(s). The VCC-X/VCCX2 and the RSMV/RSMD Module(s) must be powered for this test. Read voltage with a meter set on DC volts. Place the positive lead from the meter on the PR OUT terminal located on the RSMV/RSMD Module(s) terminal block. Place the negative lead from the meter on the ground (GND) terminal located adjacent to the PR OUT terminal on the RSMV/RSMD Module(s) terminal block. Use a refrigerant gauge set and/or an accurate electronic thermometer to measure the temperature or suction line pressure near where the Suction Pressure Transducer is connected to the suction line. Measure the Voltage at the terminals PR OUT and GND terminals and compare it to the appropriate chart depending on the refrigerant you are using. If the temperature/voltage or pressure/voltage readings do not align closely with the chart, your Suction Pressure Transducer is probably defective and will need to be replaced.

See the OE275-01 Suction Pressure Transducer, Pressure, Temperature, and Voltage Chart for R410A Refrigerant testing. The charts show a temperature range from 20°F to 80°F. For troubleshooting purposes, the DC Voltage readings are also listed with their corresponding temperatures and pressures.

<table>
<thead>
<tr>
<th>Temperature °F</th>
<th>Pressure PSI</th>
<th>Signal DC Volts</th>
<th>Temperature °F</th>
<th>Pressure PSI</th>
<th>Signal DC Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.19</td>
<td>80.94</td>
<td>1.8</td>
<td>59.03</td>
<td>168.10</td>
<td>3.2</td>
</tr>
<tr>
<td>24.49</td>
<td>87.16</td>
<td>1.9</td>
<td>61.17</td>
<td>174.32</td>
<td>3.3</td>
</tr>
<tr>
<td>27.80</td>
<td>93.39</td>
<td>2.0</td>
<td>63.19</td>
<td>180.55</td>
<td>3.4</td>
</tr>
<tr>
<td>30.99</td>
<td>99.62</td>
<td>2.1</td>
<td>65.21</td>
<td>186.78</td>
<td>3.5</td>
</tr>
<tr>
<td>33.89</td>
<td>105.84</td>
<td>2.2</td>
<td>67.23</td>
<td>193.00</td>
<td>3.6</td>
</tr>
<tr>
<td>36.80</td>
<td>112.07</td>
<td>2.3</td>
<td>69.24</td>
<td>199.23</td>
<td>3.7</td>
</tr>
<tr>
<td>39.71</td>
<td>118.29</td>
<td>2.4</td>
<td>71.15</td>
<td>205.46</td>
<td>3.8</td>
</tr>
<tr>
<td>42.30</td>
<td>124.52</td>
<td>2.5</td>
<td>72.95</td>
<td>211.68</td>
<td>3.9</td>
</tr>
<tr>
<td>44.85</td>
<td>130.75</td>
<td>2.6</td>
<td>74.76</td>
<td>217.91</td>
<td>4.0</td>
</tr>
<tr>
<td>47.39</td>
<td>136.97</td>
<td>2.7</td>
<td>76.57</td>
<td>224.14</td>
<td>4.1</td>
</tr>
<tr>
<td>49.94</td>
<td>143.2</td>
<td>2.8</td>
<td>78.37</td>
<td>230.36</td>
<td>4.2</td>
</tr>
<tr>
<td>52.23</td>
<td>149.42</td>
<td>2.9</td>
<td>80.18</td>
<td>236.59</td>
<td>4.3</td>
</tr>
<tr>
<td>54.50</td>
<td>155.65</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56.76</td>
<td>161.88</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Coil Pressure/Voltage/Temp for OE275-01 Suction Pressure Transducers - R410A Refrigerant
Coil Temperature Sensor Testing

The following sensor voltage and resistance table is provided to aid in checking sensors that appear to be operating incorrectly. Many system operating problems can be traced to incorrect sensor wiring. Be sure all sensors are wired per the wiring diagrams in this manual.

If the sensors still do not appear to be operating or reading correctly, check voltage and/or resistance to confirm that the sensor is operating correctly per the tables. Please follow the notes and instructions that appear after the chart when checking sensors.

| Temperature – Resistance – Voltage for Type III 10 K Ohm Thermistor Sensors |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| **Temp (°F)** | **Temp (°C)** | **Resistance (Ohms)** | **Voltage @ Input (VDC)** |
|----------------|----------------|----------------|----------------|----------------|
| -10 | -23.33 | 93333 | 4.51 |
| -5 | -20.55 | 80531 | 4.45 |
| 0 | -17.77 | 69822 | 4.37 |
| 5 | -15 | 60552 | 4.29 |
| 10 | -12.22 | 52500 | 4.2 |
| 15 | -9.44 | 45902 | 4.1 |
| 20 | -6.66 | 40147 | 4.002 |
| 25 | -3.88 | 35165 | 3.891 |
| 30 | -1.11 | 30805 | 3.773 |
| 35 | 1.66 | 27140 | 3.651 |
| 40 | 4.44 | 23874 | 3.522 |
| 45 | 7.22 | 21094 | 3.39 |
| 50 | 10 | 18655 | 3.252 |
| 52 | 11.11 | 17799 | 3.199 |
| 54 | 12.22 | 16956 | 3.143 |
| 56 | 13.33 | 16164 | 3.087 |
| 58 | 14.44 | 15385 | 3.029 |
| 60 | 15.55 | 14681 | 2.972 |
| 62 | 16.66 | 14014 | 2.916 |
| 64 | 17.77 | 13382 | 2.861 |
| 66 | 18.88 | 12758 | 2.802 |
| 68 | 20 | 12191 | 2.746 |
| 69 | 20.55 | 11906 | 2.717 |
| 70 | 21.11 | 11652 | 2.691 |
| 71 | 21.66 | 11379 | 2.661 |
| 72 | 22.22 | 11136 | 2.635 |
| 73 | 22.77 | 10878 | 2.605 |

Table 4: Temperature/Resistance for Type III 10K Ohm Thermistor Sensors

Thermistor Sensor Testing Instructions

Use the resistance column to check the thermistor sensor while disconnected from the controllers (not powered).

Use the voltage column to check sensors while connected to powered controllers. Read voltage with meter set on DC volts. Place the “-” (minus) lead on GND terminal and the “+” (plus) lead on the sensor input terminal being investigated.

If the voltage is above 4.88 VDC, then the sensor or wiring is “open.” If the voltage is less than 0.05 VDC, then the sensor or wiring is shorted.
Head Pressure Transducer Troubleshooting

If you suspect there is a problem related to head pressure transducer measurements, reference Table 5, below.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Pressure</th>
<th>Voltage</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0</td>
<td>2.6</td>
<td>350</td>
</tr>
<tr>
<td>0.6</td>
<td>17</td>
<td>2.7</td>
<td>367</td>
</tr>
<tr>
<td>0.7</td>
<td>33</td>
<td>2.8</td>
<td>384</td>
</tr>
<tr>
<td>0.8</td>
<td>50</td>
<td>2.9</td>
<td>400</td>
</tr>
<tr>
<td>0.9</td>
<td>67</td>
<td>3.0</td>
<td>417</td>
</tr>
<tr>
<td>1.0</td>
<td>83</td>
<td>3.1</td>
<td>434</td>
</tr>
<tr>
<td>1.1</td>
<td>100</td>
<td>3.2</td>
<td>450</td>
</tr>
<tr>
<td>1.2</td>
<td>117</td>
<td>3.3</td>
<td>467</td>
</tr>
<tr>
<td>1.3</td>
<td>133</td>
<td>3.4</td>
<td>484</td>
</tr>
<tr>
<td>1.4</td>
<td>150</td>
<td>3.5</td>
<td>500</td>
</tr>
<tr>
<td>1.5</td>
<td>167</td>
<td>3.6</td>
<td>517</td>
</tr>
<tr>
<td>1.6</td>
<td>183</td>
<td>3.7</td>
<td>534</td>
</tr>
<tr>
<td>1.7</td>
<td>200</td>
<td>3.8</td>
<td>550</td>
</tr>
<tr>
<td>1.8</td>
<td>217</td>
<td>3.9</td>
<td>567</td>
</tr>
<tr>
<td>1.9</td>
<td>233</td>
<td>4.0</td>
<td>584</td>
</tr>
<tr>
<td>2.0</td>
<td>250</td>
<td>4.1</td>
<td>600</td>
</tr>
<tr>
<td>2.1</td>
<td>267</td>
<td>4.2</td>
<td>617</td>
</tr>
<tr>
<td>2.2</td>
<td>283</td>
<td>4.3</td>
<td>634</td>
</tr>
<tr>
<td>2.3</td>
<td>300</td>
<td>4.4</td>
<td>650</td>
</tr>
<tr>
<td>2.4</td>
<td>317</td>
<td>4.5</td>
<td>667</td>
</tr>
<tr>
<td>2.5</td>
<td>334</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Head Pressure Transducer Chart
APPENDIX: CONDENSER OPTIONS

Single Condenser Per 1 Module

Single Condenser Per 1 Module

In Single Condenser Per 1 Module wiring configuration, the Condenser Signal is wired to AO2 and the Condenser Relay RLY3 is enabled. Refer to the figures below for Prism 2 configuration and Modular Service Tool Screen selection.

Figure 6: Prism 2 Condenser Configuration

RSMV & RSMV-HP Condenser Options

Configuration Screen

Select the “1 Condenser per 1 RSMV” option on the above Hand Held Service Tool Screen.
Single Condenser Per 2 Modules

In Single Condenser Per 2 Modules wiring configuration, if using 2 modules, the Condenser Signal is wired to AO2 on the 1st module but not the 2nd module and the Condenser Relay RLY3 is enabled on the 1st module but not the 2nd module.

If using 4 modules, the Condenser Signal is wired to AO2 on the 1st and 3rd modules but not the 2nd and 4th modules and the Condenser Relay RLY3 is enabled on the 1st and 3rd modules but not the 2nd and 4th modules.

Refer to the figures below for Prism 2 configuration and Modular Service Tool Screen selection.

RSMV & RSMV-HP Condenser Options Configuration Screen

Select the “1 Condenser per 2 RSMVs” option on the above Hand Held Service Tool Screen.
Single Condenser for Three Modules

In Single Condenser for 3 Modules wiring configuration, the Condenser Signal is wired to AO2 on the 1st module but not the 2nd & 3rd modules and the Condenser Relay RLY3 is enabled on the 1st module but not the 2nd & 3rd modules. Refer to the figures below for Prism 2 configuration and Modular Service Tool Screen selection.

Figure 8: Prism 2 Condenser Configuration

RSMV & RSMV-HP Condenser Options

Select the “1 Condenser for 3 RSMVs” option on the above Hand Held Service Tool Screen.
Single Condenser for 4 Modules

In Single Condenser for 4 Modules wiring configuration, the Condenser Signal is wired to AO2 on the 1st module but not the 2nd, 3rd, or 4th modules and the Condenser Relay RLY3 is enabled on the 1st module but not the 2nd, 3rd, or 4th modules. Refer to the figures below for Prism 2 configuration and Modular Service Tool Screen selection.

![Figure 9: Prism 2 Condenser Configuration](image)

RSMV & RSMV-HP Condenser Options Configuration Screen

Select the “1 Condenser for 4 RSMVs” option on the above Hand Held Service Tool Screen.
System Configurations

System Configuration Using Prism 2

Refer to Figure 10 below in setting RSMV configuration options.

![RSMV Configurations](image)

Figure 10: Prism 2 RSMV Configuration Screen

Single Compressor Configuration
Select this configuration if the RSMV only has one Compressor wired to it. If there are two Compressors, leave this selection blank.

Single Evaporator Coil Configuration
Select this configuration if the RSMV only has one Expansion Valve wired to it. If there are two Expansion Valves, leave this selection blank.

Fixed Compressors Configuration
Select this configuration if the RSMV only has Fixed Compressors wired to it. If the first Compressor is Modulating, leave this selection blank.

Single Condenser Coil Expansion Valve Configuration
This configuration only applies when using the RSMV-HP. Select this configuration when Expansion Valve 3 is wired and Expansion Valve 4 is not wired. If both are connected, leave this selection blank.

Copeland VFD Configuration
Select this configuration if the RSMV is controlling a Copeland VFD through the MODBUS connection.

Single Compressor Startup
Select this configuration if the desired startup routine enables one compressor at a time on the system. Leaving this blank makes the first compressor on each module enabled at startup which is the default method. Most systems require the first compressor on each module to be enabled to achieve the full evaporator coil face active.